RNN又行了!DeepMind新发布的Griffin可以与同级别的LLM性能相当

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: Hawk和Griffin是DeepMind推出的新型循环神经网络(RNNs),2月刚刚发布在arxiv上。Hawk通过使用门控线性递归(gated linear recurrences)超越了Mamba的性能,而Griffin则是一种混合型模型,结合了门控线性递归和局部注意力(local attention),与Llama-2的性能相当,但使用的训练数据明显较少。Griffin在处理比训练时更长的序列时表现出色。这两种模型在硬件效率方面与Transformer相当,但在推理过程中具有更低的延迟和更高的吞吐量。Griffin的规模已扩展到了140亿个(14B)参数。

模型架构

该架构有三个主要组件:残差块(residual block)、MLP块和时序混合块(temporal-mixing block)。残差块和MLP块在不同模型中保持一致,而时序混合块有三种类型:全局多查询注意力(global Multi-Query Attention,MQA)、局部MQA和一种新颖的循环块。

残差块:受到预归一化Transformer的启发,通过多层处理输入序列,对最终激活应用RMSNorm,并使用一个共享的线性层来计算标记概率。

MLP块:采用具有扩展因子的门控机制,应用线性层和GeLU非线性激活,然后进行逐元素乘法和最终的线性层。

时序混合块:

  • 全局MQA旨在通过使用128维的头,并且要求模型维度是128的倍数来提高推理速度(与Multi-Head Attention相比)。使用旋转位置嵌入(Rotary Position Embedding,RoPE)代替绝对位置嵌入。
  • 局部滑动窗口注意力通过将注意力限制在固定窗口的过去标记上,解决了全局注意力的计算效率问题。
  • 循环块受现有块(如GSS块和Mamba的块)的启发,对输入应用两个平行线性层。在一个小的Conv1D后一个分支上使用新发明的RG-LRU,另一个分支使用GeLU进行激活,然后通过逐元素乘法合并它们,输入到最终的线性层。

Real-Gated Linear Recurrent Unit(RG-LRU)具有一个循环门和一个输入门,两者都使用Sigmoid函数进行非线性处理,并执行逐元素操作以实现稳定的循环。RG-LRU使用可学习参数来确保门控值稳定在0到1之间。这些门控不依赖于循环状态,这样可以实现高效的计算。

循环门允许丢弃输入并保留所有来自先前历史的信息。

循环模型和Transformers一样有效

这三个模型系列都是在从100M到14B参数的各种规模上进行训练的,遵循Chinchilla扩展定律并使用MassiveText数据集。所有模型显示出验证损失与训练FLOPs之间都呈线性关系。Griffin在所有相同的FLOP下都比Transformer模型实现了更低的验证损失(没有使用全局注意力层);而Hawk显示出稍高的验证损失,但随着FLOP的增加,这种差距逐渐缩小。

对于下游任务评估,模型使用了300B标记的进行训练,与使用更多标记进行训练的Mamba-3B和Llama-2进行了比较。Hawk在3B大小上优于Mamba-3B,而Griffin不仅超过了Mamba-3B,在7B和14B规模上还与Llama-2不相上下。此外Griffin还优于MQA Transformer基线,显示了这些模型在使用更少的训练令牌标记实现高性能方面是有效的。

循环模型的高效训练

对于大规模训练,作者使用Megatron的分片技术来处理MLP和MQA模块,并使用块对角权重来处理RG-LRU门控,减少设备间的通信。使用ZeRO并行和bfloat16表示来控制内存消耗。

为了解决RG-LRU层低FLOPs与字节比的计算挑战,作者在Pallas(JAX)中编写了一个自定义内核,这种线性扫描的方法提升了3倍的速度。

跨不同模型和序列长度的训练速度比较显示:随着序列长度增加,Griffin可以保持一致的训练时间,这与Transformer的训练时间形成对比。这种效率归因于线性层与RG-LRU和注意力机制的不同,而对于短序列由于Griffin稍高的参数和FLOP数量导致它的训练速度略低于MQA基线。

推理速度

在大型语言模型(LLMs)中的推理包括两个阶段:“预填充”阶段(其中提示信息被并行处理,这会导致速度与训练期间相似),以及“解码”阶段(其中标记被自回归地生成),循环模型在较长序列长度上展示出较低的延迟和较高的吞吐量。

所以延迟和吞吐量是评估推理速度的主要指标。在解码过程中Transformer和循环模型都受到内存限制,但是与Transformer的KV缓存相比,循环模型具有较小的循环状态大小,所以具有较低的延迟并且可以处理更大的批次数据从而提高吞吐量。

在1B参数模型的推理性能比较中,Hawk和Griffin展示了与MQA Transformer基线相比更好的延迟和吞吐量(特别是对于长序列)。随着预填充长度的增加,Hawk和Griffin的低延迟变得更加明显,突出了线性递归和局部注意机制的效率。

长上下文建模

作者评估了Hawk和Griffin的长上下文预测能力。其中Griffin展现出了显著的外推能力。使用8k标记序列训练的模型与使用2k标记序列训练的模型进行对比,Hawk-8k和Griffin-8k在处理更长序列时表现更好。对于较短的序列,使用2k标记训练的模型(Hawk-2k和Griffin-2k)则更好。这表明了将训练序列长度与模型预期应用需求保持一致是非常有必要的。

论文还通过一个synthetic tasks和一个实际的电话号码查找任务,研究了Hawk和Griffin在复制和检索上下文中的标记的能力,并将它们与MQA Transformer基线进行了比较。在选择性复制和归纳任务中,Griffin与Transformer的学习速度相匹配,并展示了对较长序列的优越外推能力,而Transformer基线在外推方面表现不佳。Hawk在归纳头部任务中表现出色的外推能力但是它学习速度上较慢。

在一个真实的电话簿查找任务中,对预训练的Hawk、Griffin和MQA Transformer模型进行了测试。Hawk在较短的电话簿长度上表现良好,但由于其状态是固定大小的,所以随着长度的增加性能逐渐降低。Transformer基线在其训练序列长度范围内是没有问题的,但在序列长处超出了范围则获得了非常差的性能。Griffin在解决任务时表现出色,对较长序列的外推能力更好,但是上下文超出窗口大小性能也会下降。

总结

Griffin: Mixing Gated Linear Recurrences with Local Attention for Efficient Language Models是一个非常有意思的研究,想想Transformer 就是17年google发布的,现在又看是研究回状态空间和循环了,也许这个方向是LLM的下一个突破也不一定,有兴趣的可以多关注下。

论文地址:

https://avoid.overfit.cn/post/7aa26536acf14c3b81d26b4dc0a6db49

代码目前我们看到,看看有什么后续吧

作者:Andrew Lukyanenko

目录
相关文章
|
18天前
|
机器学习/深度学习 人工智能 自然语言处理
LLM群体智能崛起,数学性能暴增11.6%!谷歌DeepMind四大机构联手新作
【10月更文挑战第17天】近日,谷歌、DeepMind等四大机构联合发布论文,展示大型语言模型(LLMs)在数学问题解决上的显著进步。通过引入元认知知识,研究人员开发了提示引导的交互程序,使LLMs能为数学问题分配合理技能标签并进行语义聚类。实验结果显示,GPT-4在GSM8K和MATH数据集上的准确性分别提升了11.6%和7.52%,展现出巨大潜力。这一成果不仅为AI领域提供了新思路,也为数学教育带来了启示。
35 4
|
8天前
|
机器学习/深度学习 自然语言处理
完全使用自生成数据实现LLM自我纠正,DeepMind新突破SCoRe:纠正性能提升15.9%
【10月更文挑战第27天】Google DeepMind 研究人员开发了 SCoRe 方法,利用多回合在线强化学习显著提升大型语言模型(LLM)的自我纠正能力。该方法分为两个阶段:第一阶段通过强化学习减少行为崩溃,第二阶段使用奖励塑造优化两次尝试的性能。实验结果显示,SCoRe 在数学和编程任务上分别提升了 4.4% 和 12.2% 的自我纠正性能。
24 3
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
LLM群体智能崛起,数学性能暴增11.6%!谷歌DeepMind四大机构联手新作
【10月更文挑战第16天】最新研究显示,大型语言模型(LLMs)在数学问题解决上取得显著进展。谷歌、DeepMind等机构的研究人员通过引入元认知知识,使LLMs能更好地理解和解决数学问题,其在GSM8K和MATH数据集上的准确率分别提升了11.6%和7.52%。这一成果不仅为AI领域开辟了新路径,也为数学教育带来了新的可能性。
36 3
|
2月前
|
人工智能 机器人 语音技术
OpenVINO™ 加速PC及小型设备LLM性能 | OpenVINO™ DEVCON 2024 第五期
时隔一月,OpenVINO™ DEVCON 中国 · 系列工作坊 2024 如期上新啦!
OpenVINO™ 加速PC及小型设备LLM性能 | OpenVINO™ DEVCON 2024 第五期
|
2月前
|
机器学习/深度学习 存储 算法
Transformer、RNN和SSM的相似性探究:揭示看似不相关的LLM架构之间的联系
通过探索大语言模型(LLM)架构之间的潜在联系,我们可能开辟新途径,促进不同模型间的知识交流并提高整体效率。尽管Transformer仍是主流,但Mamba等线性循环神经网络(RNN)和状态空间模型(SSM)展现出巨大潜力。近期研究揭示了Transformer、RNN、SSM和矩阵混合器之间的深层联系,为跨架构的思想迁移提供了可能。本文深入探讨了这些架构间的相似性和差异,包括Transformer与RNN的关系、状态空间模型在自注意力机制中的隐含作用以及Mamba在特定条件下的重写方式。
106 7
Transformer、RNN和SSM的相似性探究:揭示看似不相关的LLM架构之间的联系
|
2月前
|
机器学习/深度学习 搜索推荐
CIKM 2024:LLM蒸馏到GNN,性能提升6.2%!Emory提出大模型蒸馏到文本图
【9月更文挑战第17天】在CIKM 2024会议上,Emory大学的研究人员提出了一种创新框架,将大型语言模型(LLM)的知识蒸馏到图神经网络(GNN)中,以克服文本图(TAGs)学习中的数据稀缺问题。该方法通过LLM生成文本推理,并训练解释器模型理解这些推理,再用学生模型模仿此过程。实验显示,在四个数据集上性能平均提升了6.2%,但依赖于LLM的质量和高性能。论文链接:https://arxiv.org/pdf/2402.12022
76 7
|
2月前
|
测试技术
LLM数学性能暴涨168%,微软14人团队力作!合成数据2.0秘诀曝光,智能体生成教学
【9月更文挑战第14天】微软研究团队发布了一篇介绍新型框架"AgentInstruct"的论文,该框架旨在通过自动生成高质量合成数据,推动语言模型发展。AgentInstruct仅需原始数据源即可创建多样化的合成数据,减少人工工作量。研究团队基于此框架构建了含2500万训练对的数据集,展示了其在多种技能教学中的潜力。经微调后的Mistral-7b模型演进为Orca-3,在多个基准测试中显著超越同类模型。尽管如此,AgentInstruct仍面临创建流程耗时及合成数据复杂性不足等问题。论文详情见:https://arxiv.org/pdf/2407.03502
62 2
|
3月前
|
数据采集 自然语言处理 测试技术
CMU&清华新作:让LLM自己合成数据来学习,特定任务性能同样大幅提升
【8月更文挑战第24天】近期研究提出SELF-GUIDE,一种创新方法,旨在通过大型语言模型(LLMs)自动生成特定任务数据并用于自我微调,以克服其在特定任务上的性能局限。SELF-GUIDE分为三个阶段:数据合成、模型微调及性能评估。通过向目标LLM提供适当提示生成高质量合成数据,并用于微调以提升特定任务表现。实验证明,该方法在Natural Instructions V2等多个基准测试中显著提升了分类与生成任务性能。SELF-GUIDE不仅有效提高性能,还具备高数据效率,减少对外部数据依赖。然而,生成数据质量受限于LLM能力,且并非适用于所有任务。
61 4
|
4月前
|
测试技术
谷歌DeepMind全新ToT基准:全面评估LLM时间推理能力
【7月更文挑战第10天】DeepMind的ToT基准测试了大型语言模型的时间推理能力,分为ToT-Semantic(合成数据,评估时间逻辑理解)和ToT-Arithmetic(真实数据,检查时间计算)。研究使用Claude-3-Sonnet、GPT-4和Gemini 1.5 Pro进行评估,发现模型在时间逻辑理解上表现各异,而时间计算上均较强。 Gemini 1.5 Pro在复杂问题上表现出色,而GPT-4在数学相关问题上较弱。[[1](https://arxiv.org/pdf/2406.09170)]
51 1
|
6月前
|
机器学习/深度学习 缓存 算法
LLM 大模型学习必知必会系列(十二):VLLM性能飞跃部署实践:从推理加速到高效部署的全方位优化[更多内容:XInference/FastChat等框架]
LLM 大模型学习必知必会系列(十二):VLLM性能飞跃部署实践:从推理加速到高效部署的全方位优化[更多内容:XInference/FastChat等框架]
LLM 大模型学习必知必会系列(十二):VLLM性能飞跃部署实践:从推理加速到高效部署的全方位优化[更多内容:XInference/FastChat等框架]
下一篇
无影云桌面