Yolov5水果分类识别+pyqt交互式界面

简介: Yolov5水果分类识别+pyqt交互式界面

Yolov5 Fruits Detector

  • Yolov5 是一种先进的目标检测算法,可以应用于水果分类识别任务。结合 PyQT

框架,可以创建一个交互式界面,使用户能够方便地上传图片并获取水果分类结果。以下将详细阐述 Yolov5 水果分类识别和 PyQT

交互式界面的实现。

  • Yolov5 是由 Ultralytics

公司开发的一种基于深度学习的目标检测算法,它采用了一种称为单阶段目标检测的方法,具有高准确率和实时性的特点。在水果分类识别任务中,Yolov5

可以检测图像中的水果,并将其分类为不同的类别,例如苹果、香蕉、橙子等。

  • 为了实现 Yolov5 水果分类识别的交互式界面,可以使用 PyQT 框架进行开发。PyQT 是一个功能强大且易于使用的 Python

GUI 开发工具包,它提供了丰富的界面组件和布局选项,可以轻松创建用户友好的界面。

  • 在界面设计方面,可以使用 PyQT 创建一个包含上传图片按钮和显示分类结果的窗口。当用户点击上传图片按钮时,可以调用 Yolov5

模型对上传的图片进行识别,并将分类结果显示在界面上。同时,还可以添加其他功能,如清除界面、保存结果等。


要求

  • 可以使用 Linux 或者 Windows。我们推荐使用 Linux 以获得更好的性能。
  • 需要安装 Python 3.6+ 和 PyTorch 1.7+。


安装

运行以下命令来安装依赖项:

pip install -r requirements.txt

代码

运行此部分检测ui界面代码

import sys
import os

from PySide6.QtWidgets import QApplication, QWidget, QFileDialog
from PySide6.QtCore import QFile
from PySide6.QtUiTools import QUiLoader
from PySide6.QtGui import QPixmap, QImage
from PySide6.QtCore import QThread, Signal, QDir
import cv2


def convertCVImage2QtImage(cv_img):
    cv_img = cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB)
    height, width, channel = cv_img.shape
    bytesPerLine = 3 * width
    qimg = QImage(cv_img.data, width, height, bytesPerLine, QImage.Format_RGB888)
    return QPixmap.fromImage(qimg)


class ProcessImage(QThread):
    signal_show_frame = Signal(object)

    def __init__(self, fileName):
        QThread.__init__(self)
        self.fileName = fileName

        from detector import Detector
        self.detector = Detector()

    def run(self):
        self.video = cv2.VideoCapture(self.fileName)
        while True:
            valid, self.frame = self.video.read()
            if valid is not True:
                break
            self.frame = self.detector.detect(self.frame)
            self.signal_show_frame.emit(self.frame)
            cv2.waitKey(30)
        self.video.release()

    def stop(self):
        try:
            self.video.release()
        except:
            pass


class show(QThread):
    signal_show_image = Signal(object)

    def __init__(self, fileName):
        QThread.__init__(self)
        self.fileName = fileName
        self.video=cv2.VideoCapture(self.fileName)

    def run(self): 
        while True:
            valid, self.frame = self.video.read()
            if valid is not True:
                break
            self.signal_show_image.emit(self.frame)
            cv2.waitKey(30)
        self.video.release()

    def stop(self):
        try:
            self.video.release()
        except:
            pass


class MainWindow(QWidget):
    def __init__(self):
        super(MainWindow, self).__init__()
        loader = QUiLoader()
        self.ui = loader.load("ui/form.ui")
        
        self.ui.btn_browse.clicked.connect(self.getFile)
        self.ui.btn_start.clicked.connect(self.predict)

        self.ui.show()

    def getFile(self):
        self.fileName = QFileDialog.getOpenFileName(self,'Single File','C:\'','*.jpg *.mp4 *.jpeg *.png *.avi')[0]
        self.ui.txt_address.setText(str(self.fileName))
        self.show=show(self.fileName)
        self.show.signal_show_image.connect(self.show_input)
        self.show.start()
        
        
    def predict(self):
        self.process_image = ProcessImage(self.fileName)
        self.process_image.signal_show_frame.connect(self.show_output)
        self.process_image.start()

    def show_input(self, image):
        pixmap = convertCVImage2QtImage(image)
        self.ui.lbl_input.setPixmap(pixmap)

    def show_output(self, image):
        pixmap = convertCVImage2QtImage(image)
        self.ui.lbl_output.setPixmap(pixmap)

if __name__ == "__main__":
    app = QApplication(sys.argv)
    widget = MainWindow()
    sys.exit(app.exec())


运行界面

要对图像或视频进行推断,请运行以下命令:

python main.py


数据集:

  • 数据集可以在此链接中找到https://t.ly/NZWj
  • 在 Yolov5 水果分类识别的实现过程中,需要使用训练好的 Yolov5 模型来进行目标检测和分类。可以使用已经预训练好的 Yolov5 模型,也可以自己训练一个适用于水果分类的模型。


总结

总结起来,Yolov5 水果分类识别结合 PyQT 交互式界面可以提供一个方便用户上传图片并获取水果分类结果的工具。Yolov5 算法具有高准确率和实时性,在水果分类任务中表现出色。PyQT 框架提供了丰富的界面组件和布局选项,使得界面开发更加简单。通过 Yolov5 水果分类识别和 PyQT 交互式界面的结合,用户可以轻松地进行水果分类识别,并获得准确的分类结果。 30d71d8b24ab44c59f6d0ef88fb8f8ec.png


相关文章
|
1月前
|
数据可视化 开发者 Python
Python GUI开发:Tkinter与PyQt的实战应用与对比分析
【10月更文挑战第26天】本文介绍了Python中两种常用的GUI工具包——Tkinter和PyQt。Tkinter内置于Python标准库,适合初学者快速上手,提供基本的GUI组件和方法。PyQt基于Qt库,功能强大且灵活,适用于创建复杂的GUI应用程序。通过实战示例和对比分析,帮助开发者选择合适的工具包以满足项目需求。
95 7
|
2月前
|
Python
Python实用记录(十六):PyQt/PySide6联动VSCode便捷操作指南
本文提供了一份详细的PySide6与VSCode联动的操作指南,包括安装配置VSCode、安装必要的扩展、配置扩展以及编辑和运行PySide6项目。文中还提到了相关工具如uic.exe、rcc.exe和designer.exe的用途,并提供了进一步学习的资源。
407 1
Python实用记录(十六):PyQt/PySide6联动VSCode便捷操作指南
|
3月前
|
Python
5-5|python开启多线程入口必须在main,从python线程(而不是main线程)启动pyQt线程有什么坏处?...
5-5|python开启多线程入口必须在main,从python线程(而不是main线程)启动pyQt线程有什么坏处?...
|
2月前
|
XML JSON Ubuntu
Python实用记录(十五):PyQt/PySide6打包成exe,精简版(nuitka/pyinstaller/auto-py-to-exe)
本文介绍了使用Nuitka、PyInstaller和auto-py-to-exe三种工具将Python的PyQt/PySide6应用打包成exe文件的方法。提供了详细的安装步骤、打包命令和参数说明,适合新手学习和实践。
489 0
|
4月前
|
数据采集 开发工具 Python
海康威视工业相机SDK+Python+PyQt开发数据采集系统(支持软件触发、编码器触发)
该系统基于海康威视工业相机SDK,使用Python与PyQt开发,支持Gige与USB相机设备的搜索及双相机同时显示。系统提供软件触发与编码器触发模式,并可在数据采集过程中实时保存图像。此外,用户可以调节曝光时间和增益,并进行信息输入,这些信息将被保存至配置文件以便下次自动加载。参数调节与实时预览等功能进一步增强了系统的实用性。
251 1
|
4月前
|
数据可视化 Linux API
Tkinter与PyQt的对比
【8月更文挑战第3天】本文对比了Python中两大GUI工具包Tkinter与PyQt。Tkinter作为Python标准库的一部分,易于学习且轻量级,适合快速开发简单的跨平台GUI应用。PyQt功能强大且灵活,支持复杂应用的开发,更适合有经验的开发者。通过示例代码展示了如何使用这两种工具包创建基本的GUI应用及图像查看器,帮助读者理解它们的不同之处。选择哪个工具包取决于项目的具体需求、开发者的经验以及对功能和性能的要求。
124 4
|
7月前
|
Python
PyQt---------信号与槽函数的关系
PyQt---------信号与槽函数的关系
202 1
|
7月前
|
Python
PyQt学习------PyQt自定义信号
PyQt学习------PyQt自定义信号
75 0
|
7月前
|
图形学 Python
PyQt中图表的建立与显示(完整过程演示)
PyQt中图表的建立与显示(完整过程演示)
151 0
|
7月前
|
Python
PyQt如何查找帮助信息(不会写组件的代码,快看过来!)
PyQt如何查找帮助信息(不会写组件的代码,快看过来!)
41 0