flink问题之做实时数仓sql保证分topic区有序如何解决

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Apache Flink是由Apache软件基金会开发的开源流处理框架,其核心是用Java和Scala编写的分布式流数据流引擎。本合集提供有关Apache Flink相关技术、使用技巧和最佳实践的资源。

问题一:flink 1.10 kafka collector topic 配置pattern


请教大家,flink 1.10里面kafka connector 不能配置topic pattern,后续会支持吗?


参考回答:

可以关注下:https://issues.apache.org/jira/browse/FLINK-18449

预计1.12会支持。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/371672


问题二:kafkaf To mysql 写入问题


请教两个问题 1) 用下面的代码消费kafka 发生序列化异常时,会发生JOB反复重试,重启后也是这样, 改用FlinkKafkaConsumer010类的话,有相关的解决方法,参照https://stackoverflow.com/questions/51301549/how-to-handle-exception-while-parsing-json-in-flink/51302225 不知道,用Kafka类的话,如何解决 .connect( new Kafka() .version("0.10") .topic("test-input") 2) 对于timestamp类型字段,用JDBCAppendTableSink 把DataStream 写入到mysql时,会发下面的错误LocalTimeStamp到Timestamp的转型错误 kafka消息是avro格式,字段类型设置为timestamp(3),我是把System.currentTimeMillis()写入到kafka中的 jdbc参数类型设置为Types.SQL_TIMESTAMP


参考回答:

估计需要使用Flink 1.11。

1.JSON Format有参数控制 [1]

2.是之前的bug,Flink 1.11应该是不会存在了,不确定1.10.1有没有修。

[1]

https://ci.apache.org/projects/flink/flink-docs-master/dev/table/connectors/formats/json.html#json-ignore-parse-errors


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/371671


问题三:rocksdb的block cache usage应该如何使用


通过 state.backend.rocksdb.metrics.block-cache-usage: true开启 rocksdb_block_cache_usage监控,上报到prometheus,对应的指标名称是 flink_taskmanager_job_task_operator_window_contents_rocksdb_block_cache_usage。

我们的作业一个TM的内存设置如下:

taskmanager.memory.process.size: 23000m taskmanager.memory.managed.fraction: 0.4

ui上显示的Flink Managed MEM是8.48G。

通过grafana配置出来的图,如果group by的维度是host,得出来的每个TM在作业稳定后是45G,超过8.48G了。

sum(flink_taskmanager_job_task_operator_window_contents_rocksdb_block_cache_usage{reportName=~"$reportName"}) by (host)

如果维度是host,operator_name,每个operator_name维度是22G。

sum(flink_taskmanager_job_task_operator_window_contents_rocksdb_block_cache_usage{reportName=~"$reportName"}) by (host,operator_name)

请问这个指标应该如何使用?


参考回答:

默认Flink启用了rocksDB 的managed memory,这里涉及到这个功能的实现原理,简单来说,一个slot里面的所有rocksDB实例底层“托管”内存的LRU block cache均是一个,这样你可以根据taskmanager和subtask_index 作为tag来区分,你会发现在同一个TM里面的某个subtask对应的不同column_family 的block cache的数值均是完全相同的。所以不需要将这个数值进行求和统计。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/371670


问题四:flink对task分配slot问题


请教一个问题,当前同一个job下的多个task(不在一个算子链)中,都会存在某一个subTask任务过重,这些subTask会分配到同一个slot下吗?

flink在对subTask分配slot时候,会先判断slot当前存在的任务数,磁盘IO之类的吗?


参考回答:

Flink 在进行 slot sharing 的时候,不会考虑当前 slot 的任务数、磁盘 IO 这些,而是会遵循“相同 task 的多个

subtask 不能分配到同一个 slot 中”这样的一个规则。

举个例子:

如果作业中有 A, B 两个 vertex,并发为 2,那就有 A1, A2, B1, B2 这 4 个 subtask。

那么 A1 和 A2 不能放到一个 slot 中,B1 和 B2 不能够放到一个 slot 中。

所以,slot sharing 的结果只能是 (A1, B1), (A2, B2) 或 (A1, B2), (A2, B1) 这两种情况。

通常情况下,A 和 B 之间的负载可能存在较大差异,而 A1 和 A2、B1 和 B2 之间通常不会有太大差异。

因此,slot sharing 的规则使得每个 slot 中都分配了一个 A 和一个 B,各个 slot 之间的负载大体上是均衡的。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/371669


问题五:做实时数仓,sql怎么保证分topic区有序


就是我用 flink sql 通过ddl读取和写入kafka怎么设置并行度呢? flink sql 通过ddl写入kafka怎么自定义分区呢?

这样才能保证提高消费能力。和保证数据有序。 但是好像没有发现再table模式 或者sql 语句上设置 或者做自定义分区。


参考回答:

sql似乎不支持相关的设置,可以通过env或配置文件设置所有蒜子的并行度。

你可以试试流转表,可以做到细粒度的控制。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/371668

相关文章
|
3天前
|
SQL 监控 关系型数据库
用友畅捷通在Flink上构建实时数仓、挑战与最佳实践
本文整理自用友畅捷通数据架构师王龙强在FFA2024上的分享,介绍了公司在Flink上构建实时数仓的经验。内容涵盖业务背景、数仓建设、当前挑战、最佳实践和未来展望。随着数据量增长,公司面临数据库性能瓶颈及实时数据处理需求,通过引入Flink技术逐步解决了数据同步、链路稳定性和表结构差异等问题,并计划在未来进一步优化链路稳定性、探索湖仓一体架构以及结合AI技术推进数据资源高效利用。
253 22
用友畅捷通在Flink上构建实时数仓、挑战与最佳实践
|
5天前
|
存储 消息中间件 OLAP
Hologres+Flink企业级实时数仓核心能力介绍-2024实时数仓Hologres线上公开课03
本次分享由阿里云产品经理骆撷冬(观秋)主讲,主题为“Hologres+Flink企业级实时数仓核心能力”,是2024实时数仓Hologres线上公开课的第三期。课程详细介绍了Hologres与Flink结合搭建的企业级实时数仓的核心能力,包括解决实时数仓分层问题、基于Flink Catalog的Streaming Warehouse实践,并通过典型客户案例展示了其应用效果。
29 10
Hologres+Flink企业级实时数仓核心能力介绍-2024实时数仓Hologres线上公开课03
|
4月前
|
SQL 存储 API
Flink实践:通过Flink SQL进行SFTP文件的读写操作
虽然 Apache Flink 与 SFTP 之间的直接交互存在一定的限制,但通过一些创造性的方法和技术,我们仍然可以有效地实现对 SFTP 文件的读写操作。这既展现了 Flink 在处理复杂数据场景中的强大能力,也体现了软件工程中常见的问题解决思路——即通过现有工具和一定的间接方法来克服技术障碍。通过这种方式,Flink SQL 成为了处理各种数据源,包括 SFTP 文件,在内的强大工具。
225 15
|
20天前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
|
1月前
|
SQL 存储 缓存
Flink SQL Deduplication 去重以及如何获取最新状态操作
Flink SQL Deduplication 是一种高效的数据去重功能,支持多种数据类型和灵活的配置选项。它通过哈希表、时间窗口和状态管理等技术实现去重,适用于流处理和批处理场景。本文介绍了其特性、原理、实际案例及源码分析,帮助读者更好地理解和应用这一功能。
128 14
|
2月前
|
SQL 流计算 关系型数据库
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
阿里云OpenLake解决方案建立在开放可控的OpenLake湖仓之上,提供大数据搜索与AI一体化服务。通过元数据管理平台DLF管理结构化、半结构化和非结构化数据,提供湖仓数据表和文件的安全访问及IO加速,并支持大数据、搜索和AI多引擎对接。本文为您介绍以Flink作为Openlake方案的核心计算引擎,通过流式数据湖仓Paimon(使用DLF 2.0存储)和EMR StarRocks搭建流式湖仓。
563 5
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
|
3月前
|
存储 数据采集 大数据
Flink实时湖仓,为汽车行业数字化加速!
本文由阿里云计算平台产品专家李鲁兵(云觉)分享,聚焦汽车行业大数据应用。内容涵盖市场趋势、典型大数据架构、产品市场地位及能力解读,以及典型客户案例。文章详细介绍了新能源汽车市场的快速增长、大数据架构分析、实时湖仓方案的优势,以及Flink和Paimon在车联网中的应用案例。
222 8
Flink实时湖仓,为汽车行业数字化加速!
|
2月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
87 1
|
3月前
|
SQL
数仓规范之sql编写规范
编写SQL时,应遵循以下规范:所有关键字小写,表别名按a, b, c...顺序使用,复杂逻辑多行书写,提高可读性。SELECT字段需逐行列出,避免使用*,GROUP BY字段同样处理。WHERE条件多于一个时,每条件一行。JOIN子表推荐使用嵌套查询方式1,明确关联条件,避免笛卡尔积。关键逻辑需注释,INSERT SELECT后最外层字段加注释说明用途。示例中展示了推荐的JOIN替代子查询的写法,以提高代码的可读性和维护性。
173 1
|
4月前
|
存储 数据采集 OLAP
饿了么基于Flink+Paimon+StarRocks的实时湖仓探索
饿了么的实时数仓经历了多个阶段的演进。初期通过实时ETL、报表应用、联动及监控构建基础架构,随后形成了涵盖数据采集、加工和服务的整体数据架构。1.0版本通过日志和Binlog采集数据,但在研发效率和数据一致性方面存在问题。2.0版本通过Dataphin构建流批一体化系统,提升了数据一致性和研发效率,但仍面临新业务适应性等问题。最终,饿了么选择Paimon和StarRocks作为实时湖仓方案,显著降低了存储成本并提高了系统稳定性。未来,将进一步优化带宽瓶颈、小文件问题及权限控制,实现更多场景的应用。
487 7
饿了么基于Flink+Paimon+StarRocks的实时湖仓探索

相关产品

  • 实时计算 Flink版