操作系统基础:内存管理概述【上】

简介: 操作系统基础:内存管理概述【上】



🏕️1 内存管理基础概念

🏡1.1 总览

🏡1.2 内存管理应有的功能

🏖️1.2.1 内存空间的分配和回收

示意图:

🏖️1.2.2 从逻辑上扩充内存

试想,随便下载一个大软件,其大小远远超过我们的内存大小,那么为什么这个软件可以运行呢?原因是操作系统采用了虚拟内存,即使物理空间较小,但是逻辑空间却可以很大。

🏖️1.2.3 地址转换

提供地址转换功能,负责程序的逻辑地址与物理地址的转换

三种装入方式为:

🏖️1.2.4 内存保护

提供内存保护功能,保证各进程在各自存储空间内运行,互不干扰。

使进程只可以访问属于自己的空间,不能去访问系统内核、其他进程的内存空间。那么,如何才可以实现内存保护呢?

以下图的进程1为例子

(1)设置上下限寄存器。

例如,进程1的实际物理地址为100-279,那么下限寄存器应该存放100,上限寄存器应该存放279。

(2)重定位寄存器、界地址寄存器

重定位寄存器存放进程的实际物理地址的下限,界地址寄存器存放进程所需的最空间。例如,进程1的重定位寄存器存放100,界地址寄存器存放179-0=179。

🏡1.3 知识总结

🏕️2 覆盖与交换

🏰2.1 总览

🏰2.2 覆盖技术

🏖️2.2.1 覆盖技术的基本思想

🏖️2.2.2 例子

如图,这是一个程序的结构调用图。可以看到,A是程序运行所必须的代码段,因此放在固定区内;B、C不可能同时运行,因此可以分配同一个覆盖区,D、E、F同理。如图所示

因此,本来应该将代码全部放入,但是操作系统只分配了一部分空间就实现了全部放入的结果,因此从逻辑上看,操作系统的内存大小是被拓展了的。

🏖️2.2.3 缺点

🏰2.3 交换技术

🏝️2.3.1 基本思想

比如说,假设内存中有进程1、2、3,如图

此时内存紧张,进程1、2需要暂时换出外存,因此在内存保留它们的PCB后(方便操作系统的后续管理)将它们置于挂起队列,空出的内存空间给更为紧张的进程使用。

🏝️2.3.2 待解决的问题

对于问题1:

磁盘空间的示意图:

对于问题2:

对于问题三

🏰2.4 总结

🏕️3 连续内存分配

🏠3.1 总览

🏠3.2 单一连续分配

🏖️3.2.1 思想

如图:

🏖️3.2.2 优点

一个进程独占内存,就不会发生进程访问其他进程的内存空间的情况,且即使进程访问了操作系统的内核程序,通常也可以通过重启解决,所以这种方式下不一定需要采取内存保护?

🏖️3.2.3 缺点

🏠3.3 固定分区分配

🏝️3.3.1 基本思想

🏝️3.3.2 分类

根据分配的空间相等与否可以分为以下两类

如图

🏝️3.3.3 特点

🏝️3.3.4 如何管理固定分区

可以通过分区说明表进行管理,其具体内容如图:

这种数据结构可以通过数组或链表实现

🏝️3.3.5 优缺点

🏠3.4 动态分区分配

🏝️3.4.1 基本思想

🏝️3.4.2 记录内存使用情况的数据结构

可以采取空闲分区表、空闲分区链表示

(1)空闲分区表

例子:

(2)空闲分区链

例子:

🏝️3.4.3 空闲分区的分配

分配算法在下一小节进行详细描述

🏝️3.4.4 分区的分配和回收

假设操作系统采用空闲分区表管理分区(使用空闲分区链同理)

(1)分配操作

假设起始表内容如下:

①假如一个空闲分区的大小大于进程申请的空间,那么直接修改内容和即可。 假设一个4MB的进程进入,需要分配到分区1中,那么分区表应该修改如下:

②假如一个空闲分区的大小等于进程申请的空间,那么需要删除该内容。假设一个4MB的进程进入,需要分配到分区3中,那么分区表应该修改如下:

(2)回收操作

①回收分区的后面(后面)有空闲分区

直接修改表项内容

②回收分区的后面没有空闲分区

增加一个表项内容

③回收分区的前后均为空闲分区

合并表项内容

注意:各表项的排序不一定按照分区地址的大小进行排序

🕮 4 总结

操作系统,如默默守护的守夜者,无声地管理硬件与软件的交流,为计算机创造和谐秩序。

它是无形的引导者,让复杂的任务变得井然有序,为用户提供无忧体验。

操作系统的巧妙设计,让计算机变得更加智能高效,让人与科技之间的交流更加顺畅。

在每一次启动中,它如信任的伙伴,带领我们进入数字世界的奇妙旅程。

渴望挑战操作系统的学习路径和掌握进阶技术?不妨点击下方链接,一同探讨更多操作系统的奇迹吧。我们推出了引领趋势的💻OS专栏:《OS从基础到进阶》 ,旨在深度探索OS的实际应用和创新。🌐🔍

相关文章
|
8天前
|
存储 Linux 调度
深入理解操作系统:从进程管理到内存分配
【8月更文挑战第44天】本文将带你深入操作系统的核心,探索其背后的原理和机制。我们将从进程管理开始,理解如何创建、调度和管理进程。然后,我们将探讨内存分配,了解操作系统如何管理计算机的内存资源。最后,我们将通过一些代码示例,展示这些概念是如何在实际操作系统中实现的。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角和深入的理解。
|
29天前
|
安全 索引
操作系统中的内存管理策略
【8月更文挑战第23天】
53 1
|
1月前
|
算法 安全 UED
探索操作系统的内核空间:虚拟内存管理
【7月更文挑战第50天】 在现代操作系统中,虚拟内存管理是核心功能之一,它允许操作系统高效地使用物理内存,并为应用程序提供独立的地址空间。本文将深入探讨操作系统虚拟内存管理的机制,包括分页、分段以及内存交换等关键技术,并分析它们如何共同作用以实现内存的有效管理和保护。通过理解这些原理,读者可以更好地把握操作系统的内部工作原理及其对应用程序性能的影响。
|
1月前
|
存储 算法 安全
深入剖析操作系统的内存管理机制
在数字世界的构建中,操作系统扮演着至关重要的角色。本文将探讨操作系统中的内存管理机制,揭示其背后的技术原理和设计哲学。从内存分配策略到虚拟内存的实现,再到内存保护和回收机制,我们将一探究竟,解析操作系统如何高效、安全地管理宝贵的内存资源。
|
21天前
|
开发者
探索操作系统核心:一个简单的内存管理模拟
【8月更文挑战第31天】在数字世界的构建中,操作系统扮演着基石的角色。它不仅仅是软件与硬件之间的桥梁,更是维持计算机系统有序运行的心脏。本文将带您一探操作系统的核心奥秘——内存管理,通过一个简化的模型和代码示例,揭示内存分配、回收及优化的内在机制。无论您是编程新手还是资深开发者,这篇文章都将为您打开一扇理解计算机深层工作原理的大门。
|
21天前
|
Linux 调度 C语言
深入理解操作系统:从进程管理到内存分配
【8月更文挑战第31天】在数字世界的每一次点击和滑动背后,都隐藏着一个复杂而精妙的世界——操作系统。它如同一座无形的桥梁,连接着人类与机器的沟通。本文将带你一探究竟,从进程的生命周期到内存的精细管理,我们将一起解码操作系统的核心机制。通过直观的代码示例,你将看到理论与实践的结合如何让冷冰冰的机器生动起来。准备好了吗?让我们开始这段探索之旅,揭开操作系统神秘的面纱。
|
23天前
|
存储 算法 调度
深入理解操作系统:从进程管理到内存优化
【8月更文挑战第29天】在数字世界的心脏跳动着的,是无数行代码构成的操作系统。本文将带领读者穿梭于操作系统的两大核心领域——进程管理和内存优化,揭示它们如何协同工作以确保计算机系统的高效运行。通过实际代码示例,我们将探索进程的生命周期、调度策略以及内存分配和回收机制。加入我们,一起解锁操作系统的秘密,理解其背后的逻辑与哲学。
|
1月前
|
算法 程序员
理解操作系统内存管理:页面置换算法全解析
大家好,我是小米,热爱分享技术的大哥哥!今天聊的是操作系统中的页面置换算法。它解决的是内存满载时,如何选择合适的页面移出以腾出空间的问题。主要有三种算法:FIFO(先进先出),简单但性能不佳;LRU(最近最久未使用),考虑时间局部性,性能较好但实现较复杂;OPT(最佳置换),理论上最优但无法实际应用。这些算法各有千秋,在实际应用中需根据场景选择最合适的方案。希望这能帮大家更好地理解内存管理的核心机制!
72 2
|
1月前
|
分布式计算 算法 内存技术
深入理解操作系统的内存管理机制
【7月更文挑战第32天】 在现代计算机系统中,操作系统扮演着至关重要的角色,它负责协调和管理整个系统的资源。其中,内存管理作为操作系统的核心功能之一,其效率和稳定性直接影响到系统的整体性能。本文旨在探讨操作系统中内存管理的基本原理、关键技术以及面临的挑战,为读者提供一个全面了解内存管理机制的视角。通过分析不同的内存分配策略、分页与分段机制以及虚拟内存技术,我们揭示了操作系统如何优化内存使用,保证多任务环境下的数据完整性和安全性。
|
2月前
|
Cloud Native Devops 数据库
云原生架构:未来软件开发的引擎深入理解操作系统的虚拟内存管理
【7月更文挑战第30天】在这篇文章中,我们将深入探讨云原生架构的概念,以及它如何改变软件开发的世界。我们将从云原生的基本概念开始,然后深入到它的关键技术和实践,最后讨论它对软件开发的未来影响。无论你是软件开发者,还是IT专业人士,这篇文章都将为你提供深入理解和掌握云原生架构的重要信息。 【7月更文挑战第30天】在数字世界的构建中,虚拟内存是操作系统不可或缺的一环。本文将探索虚拟内存的核心概念、工作机制及其对现代计算环境的重要性,同时揭示其背后的技术细节和面临的挑战。
27 3