Java并发基础:原子类之AtomicBoolean全面解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 【2月更文挑战第1天】AtomicBoolean类优点在于能够确保布尔值在多线程环境下的原子性操作,避免了繁琐的同步措施,它提供了高效的非阻塞算法实现,可以大大提成程序的并发性能,AtomicBoolean的API设计非常简单易用。

Java并发基础:原子类之AtomicBoolean全面解析 - 程序员古德

友情提示:

本文原创&首发于公众号:程序员古德

原文标题:Java并发基础:原子类之AtomicBoolean全面解析

原文地址:https://mp.weixin.qq.com/s/oCtxIZalmHUgaCAG1McUjQ

本文概要

AtomicBoolean类优点在于能够确保布尔值在多线程环境下的原子性操作,避免了繁琐的同步措施,它提供了高效的非阻塞算法实现,可以大大提成程序的并发性能,AtomicBoolean的API设计非常简单易用。

AtomicBoolean核心概念

AtomicBooleanjava.util.concurrent.atomic中的一个类,它提供了一个原子性的布尔值,这个布尔值的读取和设置是线程安全的,不会发生线程间的冲突。

模拟一个业务场景来说明AtomicBoolean的作用,假设,有一个电商平台系统,其中一个功能是管理促销活动的开启和关闭状态,促销活动可能由多个线程或服务同时访问和修改其状态,比如一个线程可能负责定时检查促销活动的结束时间并在时间到达时关闭活动,而另一个线程可能负责实时接收运营人员的操作指令来手动开启或关闭活动。

为了确保这两个线程能够正确地更新和读取促销活动的开启状态,而不发生数据不一致的情况,可以使用 AtomicBoolean 控制这个状态:

  1. 当运营人员通过后台界面开启活动时,负责接收操作指令的线程会将 AtomicBoolean 设置为 true
  2. 当促销活动自然结束或运营人员手动关闭活动时,相应的线程会将 AtomicBoolean 设置为 false
  3. 同时,其他任何需要读取活动状态的线程,如前端展示促销活动的页面,都可以安全地读取这个 AtomicBoolean 的值,而不用担心读到的是一个正在被其他线程修改的中间状态。

AtomicBoolean类主要用来解决并发编程中的线程安全问题,特别是在需要对一个共享布尔变量进行原子性读取和修改的场景中,它的内部使用了硬件级别的原子操作来保证对布尔值的读取和设置是线程安全的,因此,在多线程环境中,当一个线程正在修改AtomicBoolean的值时,其他线程无法同时修改它,必须等待当前线程的操作完成后才能继续。

AtomicBoolean使用案例

下面是一个简单的Java代码示例,演示了如何使用AtomicBoolean类,这实例将创建一个模拟的服务,使用一个AtomicBoolean来控制其状态(开启或关闭),并通过多个线程来模拟客户端的调用,如下代码案例:

import java.util.concurrent.atomic.AtomicBoolean;  

// Service类使用AtomicBoolean来控制其状态  
public class AtomicService {
   
     
    private AtomicBoolean isRunning = new AtomicBoolean(false);  

    // 开启服务  
    public void startService() {
   
     
        isRunning.set(true);  
        System.out.println("Service started.");  
    }  

    // 关闭服务  
    public void stopService() {
   
     
        isRunning.set(false);  
        System.out.println("Service stopped.");  
    }  

    // 检查服务是否正在运行  
    public boolean isServiceRunning() {
   
     
        return isRunning.get();  
    }  

    // 客户端调用服务的模拟方法  
    public void clientRequest() {
   
     
        if (isServiceRunning()) {
   
     
            System.out.println("Client request processed successfully as the service is running.");  
        } else {
   
     
            System.out.println("Client request failed as the service is not running.");  
        }  
    }  
}  

// 客户端线程,模拟多个客户端同时请求服务  
class ClientThread extends Thread {
   
     
    private AtomicService service;  

    public ClientThread(AtomicService service) {
   
     
        this.service = service;  
    }  

    @Override  
    public void run() {
   
     
        service.clientRequest();  
    }  
}  

// 主类,包含main方法,用于启动示例  
public class AtomicBooleanDemo {
   
     
    public static void main(String[] args) throws InterruptedException {
   
     
        AtomicService atomicService = new AtomicService();  

        // 开启服务  
        atomicService.startService();  

        // 创建并启动多个客户端线程  
        Thread client1 = new ClientThread(atomicService);  
        Thread client2 = new ClientThread(atomicService);  
        client1.start();  
        client2.start();  
        client1.join(); // 等待线程执行完成  
        client2.join(); // 等待线程执行完成  

        // 关闭服务  
        atomicService.stopService();  

        // 再次尝试通过客户端线程请求服务,应该会失败  
        Thread client3 = new ClientThread(atomicService);  
        client3.start();  
        client3.join(); // 等待线程执行完成  
    }  
}

上面代码中,AtomicService类使用一个AtomicBoolean成员变量isRunning来控制服务的状态,startServicestopService方法分别用于开启和关闭服务,它们通过调用AtomicBooleanset方法来设置状态,isServiceRunning方法返回当前服务的运行状态,它通过调用AtomicBooleanget方法来获取状态。

ClientThread类是一个线程类,它模拟客户端请求服务的行为,在run方法中,它调用服务的clientRequest方法,该方法根据服务的运行状态来处理请求。

AtomicBoolean核心API

AtomicBoolean类是Java的java.util.concurrent.atomic包中的一个原子类,用于对布尔值进行原子操作,以下是AtomicBoolean类中主要方法的含义:

  1. AtomicBoolean(boolean initialValue)
    • 构造函数,用于创建一个具有给定初始值的AtomicBoolean实例。
  2. boolean get()
    • 获取当前值,此方法以原子方式读取AtomicBoolean实例的当前值,并返回它。
  3. void set(boolean newValue)
    • 设置新值,此方法以原子方式设置AtomicBoolean实例的值。
  4. boolean compareAndSet(boolean expect, boolean update)
    • 如果当前值与预期值expect相等,则以原子方式将该值设置为update,并返回true;否则返回false,这是一个条件原子更新操作,常用于实现无锁算法或数据结构。
  5. boolean getAndSet(boolean newValue)
    • 以原子方式设置AtomicBoolean的值为newValue,并返回旧值,这个方法可以用于实现一些需要知道旧值的同时更新为新值的场景。
  6. boolean weakCompareAndSet(boolean expect, boolean update)
    • compareAndSet方法类似,但允许更大的并发性,可能会失败更多(即返回false),即使在当前值与预期值相同的情况下也是如此,这个方法通常用于循环中,直到成功为止。不过,由于它可能“失败更多”,因此它通常比compareAndSet更快。
  7. String toString()
    • 返回AtomicBoolean实例的当前值的字符串表示形式("true""false")。
  8. int hashCode()
    • 返回该AtomicBoolean实例的哈希码值。
  9. boolean equals(Object obj)
    • 检查此AtomicBoolean实例与另一个对象是否相等。如果对象也是一个AtomicBoolean实例,并且两个实例的当前值相同,则返回true;否则返回false

AtomicBoolean技术原理

AtomicBooleanjava.util.concurrent.atomic 中的一个类,它提供了线程安全的方式来操作布尔值,它可以确保多个线程对同一个布尔值的操作是原子的,并且对这个布尔值的操作任何时候都只能由一个线程执行。

实现原理

AtomicBoolean的实现基于硬件级别的原子操作,它使用Java的Unsafe类来直接访问内存,并执行底层的原子操作。

Unsafe类提供了一些可以直接操作内存的低级方法,包括原子性的比较和交换(compare-and-swap,CAS)操作,CAS是一种无锁算法,它包含三个操作数——内存位置(V)、预期原值(A)和新值(B),CAS会检查内存位置V的值是否与预期原值A相等,如果是,则将该位置的值设置为新值B,这个过程是原子的,也就是说,在这个操作进行期间,不会有其他线程能够改变内存位置V的值。

AtomicBoolean的内部实现中,布尔值被存储在一个volatile修饰的字段中,以确保所有线程都能看到最新的值,volatile关键字保证了内存可见性和禁止指令重排序。

底层算法

AtomicBoolean 类中的主要方法是 get(), set(), compareAndSet(), getAndSet(), lazySet(), 和 weakCompareAndSet(),这些核心方法都使用了底层的 CAS 操作来实现原子性,如下:

  • get() 方法,直接返回当前存储的布尔值。
  • set(boolean newValue) 方法,使用 Unsafe 类的 putOrderedObject() 方法来设置新的布尔值,虽然这个方法名看起来可能不是原子的,但实际上对于布尔值这种单个字段的写入,它是原子的,不过,set() 操作本身并不保证其他线程的立即可见性,但在后续的读取操作中,由于 volatile 关键字的存在,会保证读取到的是最新的值。
  • compareAndSet(boolean expect, boolean update) 方法,这是一个典型的 CAS 操作,它首先检查当前值是否与期望的值相等,如果是,则更新为新值,这个过程是原子的。
  • getAndSet(boolean newValue) 方法,这个方法会设置新的值,并返回旧的值,它内部也是通过 CAS 操作来实现的。

虽然 AtomicBoolean 的实现基于 CAS,但它并不是锁或者同步原语,它使用了一种称为无锁编程的技术,通过避免使用传统的锁机制来减少线程间的竞争和阻塞,从而提高并发性能。

小总结AtomicBoolean 是通过底层硬件支持的原子操作和 Java 内存模型中的 volatile 关键字来实现线程安全的布尔值操作的,通过它,可以用来实现各种无锁的数据结构和算法。

核心代码实现

public class AtomicBoolean implements java.io.Serializable {
   
   
    private static final long serialVersionUID = 6214790243416807050L;

    // 使用volatile修饰符确保可见性和有序性
    private volatile int value;

    // 将value转换为布尔值
    private static final boolean BOOLEAN_TRUE = true;
    private static final int INT_TRUE = 1;

    // 构造函数
    public AtomicBoolean(boolean initialValue) {
   
   
        value = initialValue ? 1 : 0;
    }

    // 默认构造函数,默认值为false
    public AtomicBoolean() {
   
   
        this(false);
    }

    // 原子性的设置值
    public final boolean getAndSet(boolean newValue) {
   
   
        return unsafe.getAndSetInt(this, valueOffset, newValue ? 1 : 0);
    }

    // 原子性的比较并交换
    public final boolean compareAndSet(boolean expect, boolean update) {
   
   
        return unsafe.compareAndSwapInt(this, valueOffset, expect ? 1 : 0, update ? 1 : 0);
    }

    // 获取当前值
    public final boolean get() {
   
   
        return value != 0;
    }

    // Unsafe类的操作
    private static final sun.misc.Unsafe unsafe =sun.misc.Unsafe.getUnsafe();
    private static final long valueOffset;

    static {
   
   
        try {
   
   
            valueOffset = unsafe.objectFieldOffset
                (AtomicBoolean.class.getDeclaredField("value"));
        } catch (Exception ex) {
   
    throw new Error(ex); }
    }
}

从上述代码可以看出:

  1. value变量使用了volatile关键字,保证了多线程环境下的内存可见性和禁止指令重排序。
  2. 提供了如compareAndSet()getAndSet()等原子操作方法,这些方法底层通过Unsafe类提供的CAS操作实现,能在硬件层面保证操作的原子性,即在同一时间只有一个线程能修改value值,不会出现竞态条件
  3. Boolean值被转换为int值进行存储和操作,这是因为JVM无法直接对boolean类型进行CAS操作,而对int类型可以。

友情提示:
本文原创&首发于公众号:程序员古德
公众号原文地址:https://mp.weixin.qq.com/s/ckXlC7V4xC4nU0T0ipvxeA

自我总结

Java并发基础:原子类之AtomicBoolean全面解析 - 程序员古德

AtomicBoolean类的优点在于原子性操作,可确保在多线程环境中对布尔值的读取和设置不会产生竞态条件,同时,它的性能通常优于使用synchronized的代码,因为它避免了线程阻塞和上下文切换的开销。同时,AtomicBoolean还提供了丰富的API,如compareAndSetgetAndSet等。但是,虽然AtomicBoolean提供了原子性保证但它却无法解决并发中的可见性和有序性问题,这里需要特别注意。

关注我,每天学习互联网编程技术 - 程序员古德

END!
END!
END!

往期回顾

精品文章

Java并发基础:concurrent Flow API全面解析

Java并发基础:CopyOnWriteArraySet全面解析

Java并发基础:ConcurrentSkipListMap全面解析

Java并发基础:ConcurrentSkipListSet全面解析!

Java并发基础:SynchronousQueue全面解析!

相关文章
|
12天前
|
存储 Java 计算机视觉
Java二维数组的使用技巧与实例解析
本文详细介绍了Java中二维数组的使用方法
30 15
|
12天前
|
算法 搜索推荐 Java
【潜意识Java】深度解析黑马项目《苍穹外卖》与蓝桥杯算法的结合问题
本文探讨了如何将算法学习与实际项目相结合,以提升编程竞赛中的解题能力。通过《苍穹外卖》项目,介绍了订单配送路径规划(基于动态规划解决旅行商问题)和商品推荐系统(基于贪心算法)。这些实例不仅展示了算法在实际业务中的应用,还帮助读者更好地准备蓝桥杯等编程竞赛。结合具体代码实现和解析,文章详细说明了如何运用算法优化项目功能,提高解决问题的能力。
48 6
|
8天前
|
小程序 前端开发 关系型数据库
uniapp跨平台框架,陪玩系统并发性能测试,小程序源码搭建开发解析
多功能一体游戏陪练、语音陪玩系统的开发涉及前期准备、技术选型、系统设计与开发及测试优化。首先,通过目标用户分析和竞品分析明确功能需求,如注册登录、预约匹配、实时语音等。技术选型上,前端采用Uni-app支持多端开发,后端选用PHP框架确保稳定性能,数据库使用MySQL保证数据一致性。系统设计阶段注重UI/UX设计和前后端开发,集成WebSocket实现语音聊天。最后,通过功能、性能和用户体验测试,确保系统的稳定性和用户满意度。
|
12天前
|
存储 算法 搜索推荐
【潜意识Java】期末考试可能考的高质量大题及答案解析
Java 期末考试大题整理:设计一个学生信息管理系统,涵盖面向对象编程、集合类、文件操作、异常处理和多线程等知识点。系统功能包括添加、查询、删除、显示所有学生信息、按成绩排序及文件存储。通过本题,考生可以巩固 Java 基础知识并掌握综合应用技能。代码解析详细,适合复习备考。
16 4
|
12天前
|
Java 编译器 程序员
【潜意识Java】期末考试可能考的简答题及答案解析
为了帮助同学们更好地准备 Java 期末考试,本文列举了一些常见的简答题,并附上详细的答案解析。内容包括类与对象的区别、多态的实现、异常处理、接口与抽象类的区别以及垃圾回收机制。通过这些题目,同学们可以深入理解 Java 的核心概念,从而在考试中更加得心应手。每道题都配有代码示例和详细解释,帮助大家巩固知识点。希望这些内容能助力大家顺利通过考试!
15 0
|
27天前
|
监控 Java
java异步判断线程池所有任务是否执行完
通过上述步骤,您可以在Java中实现异步判断线程池所有任务是否执行完毕。这种方法使用了 `CompletionService`来监控任务的完成情况,并通过一个独立线程异步检查所有任务的执行状态。这种设计不仅简洁高效,还能确保在大量任务处理时程序的稳定性和可维护性。希望本文能为您的开发工作提供实用的指导和帮助。
85 17
|
2月前
|
Java
Java—多线程实现生产消费者
本文介绍了多线程实现生产消费者模式的三个版本。Version1包含四个类:`Producer`(生产者)、`Consumer`(消费者)、`Resource`(公共资源)和`TestMain`(测试类)。通过`synchronized`和`wait/notify`机制控制线程同步,但存在多个生产者或消费者时可能出现多次生产和消费的问题。 Version2将`if`改为`while`,解决了多次生产和消费的问题,但仍可能因`notify()`随机唤醒线程而导致死锁。因此,引入了`notifyAll()`来唤醒所有等待线程,但这会带来性能问题。
Java—多线程实现生产消费者
|
22天前
|
缓存 安全 算法
Java 多线程 面试题
Java 多线程 相关基础面试题
|
2月前
|
安全 Java Kotlin
Java多线程——synchronized、volatile 保障可见性
Java多线程中,`synchronized` 和 `volatile` 关键字用于保障可见性。`synchronized` 保证原子性、可见性和有序性,通过锁机制确保线程安全;`volatile` 仅保证可见性和有序性,不保证原子性。代码示例展示了如何使用 `synchronized` 和 `volatile` 解决主线程无法感知子线程修改共享变量的问题。总结:`volatile` 确保不同线程对共享变量操作的可见性,使一个线程修改后,其他线程能立即看到最新值。
|
2月前
|
消息中间件 缓存 安全
Java多线程是什么
Java多线程简介:本文介绍了Java中常见的线程池类型,包括`newCachedThreadPool`(适用于短期异步任务)、`newFixedThreadPool`(适用于固定数量的长期任务)、`newScheduledThreadPool`(支持定时和周期性任务)以及`newSingleThreadExecutor`(保证任务顺序执行)。同时,文章还讲解了Java中的锁机制,如`synchronized`关键字、CAS操作及其实现方式,并详细描述了可重入锁`ReentrantLock`和读写锁`ReadWriteLock`的工作原理与应用场景。

推荐镜像

更多