Java并发基础:CyclicBarrier全面解析!

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: CyclicBarrier的优点在于实现了线程间的相互等待与协同,确保所有线程在达到预定屏障点后才能继续执行,它支持屏障的重复使用,非常适合多轮次的任务同步,此外,CyclicBarrier还允许在屏障点执行特定操作,为复杂的多线程协作提供了便利。

Java并发基础:CyclicBarrier全面解析! - 程序员古德

内容摘要

CyclicBarrier的优点在于实现了线程间的相互等待与协同,确保所有线程在达到预定屏障点后才能继续执行,它支持屏障的重复使用,非常适合多轮次的任务同步,此外,CyclicBarrier还允许在屏障点执行特定操作,为复杂的多线程协作提供了便利。

核心概念

业务场景

CyclicBarrier允许一组线程互相等待,直到所有线程都到达某个屏障(barrier)点,然后这些线程可以继续执行后续的任务,这个屏障是可以循环使用的,也就是说,当所有线程都达到屏障点后,屏障会自动重置,等待下一轮的线程到来。

举一个实际业务中的例子:假设有一个大型电商公司,在每年的“双十一”大促期间,都需要进行大量的商品数据预处理工作,以应对即将到来的购物高峰。这个预处理工作包括很多步骤,比如商品信息的校验、库存的更新、价格的调整等等,由于数据量巨大,公司决定采用多线程的方式来加速处理过程。

公司可以将整个预处理任务划分为多个子任务,每个子任务由一个独立的线程来完成,但是,这些子任务之间存在一定的依赖关系,比如某个子任务需要等待其他子任务完成后才能开始执行。

在这类场景中可以使用CyclicBarrier实现多个线程之间的等待,可以将每个子任务的结束点设置为一个屏障点,当所有子任务都完成并达到这个屏障点时,说明整个预处理工作的第一阶段已经完成,可以开始第二阶段的任务了,然后,CyclicBarrier会自动重置,等待下一轮的线程到来。

这种方式以确保每个阶段的任务都按照预定的顺序执行,同时充分利用多线程的优势,提高处理效率。

技术场景

CyclicBarrier位于java.util.concurrent包中,通常用来解决以下几类技术方面的问题:

  1. 线程同步:当多个线程需要同时进行某些操作,而这些操作需要在所有线程都准备好之后才能开始时,CyclicBarrier可以用来同步这些线程,它可以让一组线程在某个点上等待,直到所有线程都达到这个点,然后这些线程才可以继续执行。
  2. 资源分解与任务划分:在处理大量数据或执行复杂任务时,通常会将任务分解成多个子任务,由不同的线程并行处理,CyclicBarrier可以确保在所有子任务完成之前,不会有线程提前进入下一个处理阶段,从而保证了数据的一致性和任务的顺序性。
  3. 循环使用:与CountDownLatch不同,CyclicBarrier是可以重复使用的,一旦所有线程都达到了屏障点,屏障会自动重置,这样就可以用于多轮的任务同步。
  4. 异常处理CyclicBarrier还提供了一个特性,即当线程在屏障点等待时,如果某个线程因为异常而中断,那么它可以传播这个异常给其他正在等待的线程,这样可以让所有线程都对异常情况作出响应。
  5. 线程间的协作:在某些场景中,线程之间需要紧密协作,比如生产者-消费者模式中的多个消费者线程需要等待所有生产者线程完成生产后才能开始消费,CyclicBarrier可以提供一个集中的同步点,简化线程间的协作逻辑。

官方文档:https://docx.iamqiang.com/jdk11/api/java.base/java/util/concurrent/CyclicBarrier.html

代码案例

下面是一个使用CyclicBarrier的简单示例代码,模拟了一个多线程任务,其中每个线程代表一个工人,他们需要完成各自的工作部分,然后在一个屏障点等待其他工人完成工作,一旦所有工人都完成了工作,他们将一起进行下一个阶段的工作,如下代码案例:

import java.util.concurrent.BrokenBarrierException;  
import java.util.concurrent.CyclicBarrier;  

public class CyclicBarrierExample {
   
     

    public static void main(String[] args) {
   
     
        final int totalWorker = 5; // 工人总数  
        CyclicBarrier cyclicBarrier = new CyclicBarrier(totalWorker); // 创建一个CyclicBarrier实例,并指定总工作线程数  

        for (int i = 0; i < totalWorker; i++) {
   
     
            new Thread(() -> {
   
     
                System.out.println("工人" + Thread.currentThread().getId() + "已准备就绪");  
                try {
   
     
                    // 线程在此等待,直到所有线程都达到这个屏障点  
                    cyclicBarrier.await();  
                } catch (InterruptedException | BrokenBarrierException e) {
   
     
                    e.printStackTrace();  
                }  
                System.out.println("工人" + Thread.currentThread().getId() + "开始下一阶段的工作");  
            }).start();  
        }  
    }  
}

在上面代码中,CyclicBarrier被设置为需要等待5个线程(工人)全部就绪,每个线程启动后,都会打印出一条消息表示它已经准备就绪,然后调用cyclicBarrier.await()方法进入等待状态,只有当所有的线程都调用了await()方法后,它们才会继续执行,并打印出下一条消息表示开始下一阶段的工作。

如下输出内容:

工人1已准备就绪  
工人10已准备就绪  
工人9已准备就绪  
工人8已准备就绪  
工人11已准备就绪  
工人8开始下一阶段的工作  
工人10开始下一阶段的工作  
工人9开始下一阶段的工作  
工人11开始下一阶段的工作  
工人1开始下一阶段的工作

核心API

下面是CyclicBarrier中一些主要方法的含义:

  1. CyclicBarrier(int parties),构造方法,创建一个新的CyclicBarrier实例,并设置需要等待的线程数(即参与方数量),parties表示需要等待的线程数,当这么多线程调用await()方法后,屏障才会打开,允许线程继续执行。
  2. CyclicBarrier(int parties, Runnable barrierAction),构造方法,除了设置需要等待的线程数外,还指定了一个当所有线程都达到屏障点时执行的任务(即屏障操作),barrierAction是一个Runnable对象,它的run()方法会在所有线程都到达屏障点后被一个线程调用,barrierAction只会在当前屏障点运行一次,如果屏障被重置,下次所有线程到达时不会再次执行该操作。
  3. int await() throws InterruptedException, BrokenBarrierException,此方法用于让当前线程在屏障点等待,直到所有线程都达到这个屏障点,如果当前线程不是最后一个到达屏障点的线程,那么它会被阻塞,直到所有线程都到达,如果当前线程是最后一个到达的,并且构造方法中指定了barrierAction,那么该操作会由当前线程或另一个线程执行(具体取决于实现),如果在等待过程中线程被中断,或者屏障被其他线程破坏(通过调用reset()方法),那么此方法会抛出异常,返回值是到达屏障点的当前线程的到达顺序,但是这个特性在实际应用中很少使用。
  4. int await(long timeout, TimeUnit unit) throws InterruptedException, BrokenBarrierException, TimeoutException,这个方法与上一个await()方法类似,但是允许指定一个最大等待时间,如果在指定的时间内所有线程都到达了屏障点,那么行为与await()相同,如果超过了指定的时间还没有所有线程到达,那么这个方法会抛出TimeoutException
  5. int getParties(),返回在CyclicBarrier中需要等待的线程数。
  6. int getNumberWaiting(),返回当前在屏障点等待的线程数。
  7. boolean isBroken(),如果屏障被破坏(可能是因为某个线程在等待时被中断,或者调用了breakBarrier()方法),那么这个方法返回true
  8. void reset(),将屏障重置为初始状态。这会导致所有当前在屏障点等待的线程抛出BrokenBarrierException,并且屏障可以被重新使用。

注意:CyclicBarrier是用来让固定数量的线程互相等待的,而不是用来同步访问共享资源的,对于共享资源的同步访问,应该使用其他同步工具,比如synchronized关键字、Lock接口的实现(如ReentrantLock),或者并发集合等。

核心总结

Java并发基础:CyclicBarrier全面解析!- 程序员古德

CyclicBarrier是Java中的一个并发工具类,它允许一组线程互相等待,直到所有线程都达到某个屏障点,然后这些线程才能继续执行。

优点

  1. 它可以重复使用,非常适合多轮任务同步。
  2. 提供了线程间的协作机制,确保任务分阶段完成。
  3. 可以指定屏障点操作,当所有线程到达时自动执行。

缺点

  1. 如果线程在等待时被中断或取消,可能会导致BrokenBarrierException。
  2. 不适合用于同步访问共享资源,更多是用于任务划分和同步点控制。

关注我,每天学习互联网编程技术 - 程序员古德

END!
END!
END!

往期回顾

精品文章

Java并发基础:CopyOnWriteArraySet全面解析

Java并发基础:ConcurrentSkipListMap全面解析

Java并发基础:ConcurrentSkipListSet全面解析!

Java并发基础:SynchronousQueue全面解析!

Java并发基础:ConcurrentLinkedQueue全面解析!

相关文章
|
10天前
|
人工智能 自然语言处理 Java
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
FastExcel 是一款基于 Java 的高性能 Excel 处理工具,专注于优化大规模数据处理,提供简洁易用的 API 和流式操作能力,支持从 EasyExcel 无缝迁移。
69 9
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
|
17天前
|
存储 缓存 Java
Java 并发编程——volatile 关键字解析
本文介绍了Java线程中的`volatile`关键字及其与`synchronized`锁的区别。`volatile`保证了变量的可见性和一定的有序性,但不能保证原子性。它通过内存屏障实现,避免指令重排序,确保线程间数据一致。相比`synchronized`,`volatile`性能更优,适用于简单状态标记和某些特定场景,如单例模式中的双重检查锁定。文中还解释了Java内存模型的基本概念,包括主内存、工作内存及并发编程中的原子性、可见性和有序性。
Java 并发编程——volatile 关键字解析
|
15天前
|
Java 数据库连接 Spring
反射-----浅解析(Java)
在java中,我们可以通过反射机制,知道任何一个类的成员变量(成员属性)和成员方法,也可以堆任何一个对象,调用这个对象的任何属性和方法,更进一步我们还可以修改部分信息和。
|
1月前
|
存储 算法 Java
Java内存管理深度解析####
本文深入探讨了Java虚拟机(JVM)中的内存分配与垃圾回收机制,揭示了其高效管理内存的奥秘。文章首先概述了JVM内存模型,随后详细阐述了堆、栈、方法区等关键区域的作用及管理策略。在垃圾回收部分,重点介绍了标记-清除、复制算法、标记-整理等多种回收算法的工作原理及其适用场景,并通过实际案例分析了不同GC策略对应用性能的影响。对于开发者而言,理解这些原理有助于编写出更加高效、稳定的Java应用程序。 ####
|
8月前
|
数据可视化 Java 测试技术
Java 编程问题:十一、并发-深入探索1
Java 编程问题:十一、并发-深入探索
80 0
|
5月前
|
安全 Java 调度
解锁Java并发编程高阶技能:深入剖析无锁CAS机制、揭秘魔法类Unsafe、精通原子包Atomic,打造高效并发应用
【8月更文挑战第4天】在Java并发编程中,无锁编程以高性能和低延迟应对高并发挑战。核心在于无锁CAS(Compare-And-Swap)机制,它基于硬件支持,确保原子性更新;Unsafe类提供底层内存操作,实现CAS;原子包java.util.concurrent.atomic封装了CAS操作,简化并发编程。通过`AtomicInteger`示例,展现了线程安全的自增操作,突显了这些技术在构建高效并发程序中的关键作用。
80 1
|
2月前
|
存储 安全 Java
Java多线程编程中的并发容器:深入解析与实战应用####
在本文中,我们将探讨Java多线程编程中的一个核心话题——并发容器。不同于传统单一线程环境下的数据结构,并发容器专为多线程场景设计,确保数据访问的线程安全性和高效性。我们将从基础概念出发,逐步深入到`java.util.concurrent`包下的核心并发容器实现,如`ConcurrentHashMap`、`CopyOnWriteArrayList`以及`BlockingQueue`等,通过实例代码演示其使用方法,并分析它们背后的设计原理与适用场景。无论你是Java并发编程的初学者还是希望深化理解的开发者,本文都将为你提供有价值的见解与实践指导。 --- ####
|
2月前
|
存储 设计模式 分布式计算
Java中的多线程编程:并发与并行的深度解析####
在当今软件开发领域,多线程编程已成为提升应用性能、响应速度及资源利用率的关键手段之一。本文将深入探讨Java平台上的多线程机制,从基础概念到高级应用,全面解析并发与并行编程的核心理念、实现方式及其在实际项目中的应用策略。不同于常规摘要的简洁概述,本文旨在通过详尽的技术剖析,为读者构建一个系统化的多线程知识框架,辅以生动实例,让抽象概念具体化,复杂问题简单化。 ####
|
4月前
|
Java API 容器
JAVA并发编程系列(10)Condition条件队列-并发协作者
本文通过一线大厂面试真题,模拟消费者-生产者的场景,通过简洁的代码演示,帮助读者快速理解并复用。文章还详细解释了Condition与Object.wait()、notify()的区别,并探讨了Condition的核心原理及其实现机制。
|
6月前
|
安全 Java 开发者
Java并发编程:理解并发安全与性能优化
在当今软件开发中,Java作为一种广泛使用的编程语言,其并发编程能力显得尤为重要。本文深入探讨了Java中的并发编程,包括如何确保并发安全性以及优化并发程序的性能。通过分析常见的并发问题和解决方案,读者将能够更好地理解如何利用Java的并发工具包来构建可靠和高效的多线程应用程序。 【7月更文挑战第10天】
68 3

推荐镜像

更多