t-sne方法:观察类别区分度

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 背景:一个二分类任务。目的:尝试使用t-sne方法,观察这两个类别是否是可分的。

样本集存储在csv文件中,链接:https://gitee.com/collisionandconflict/project_1_2_-svm_-binary_-classification_-task/blob/master/totalFeaturesForRight_Lee20240111.csv

t-sne 的python实现程序为:https://gitee.com/collisionandconflict/project_1_2_-svm_-binary_-classification_-task/blob/master/t_Sne_Lee20240220.py

程序运行的输出图片如下:
image.png

观察输出,这种0与1混在一起的情况,是否意味着无法分开,即:两个类本身没有区分性。

目录
相关文章
|
人工智能 数据可视化 数据挖掘
使用轮廓分数提升时间序列聚类的表现
我们将使用轮廓分数和一些距离指标来执行时间序列聚类实验,并且进行可视化
107 0
|
1月前
贝叶斯统计中常见先验分布选择方法总结
本文详细介绍了贝叶斯统计中三种常见的先验分布选择方法:经验贝叶斯方法、信息先验和无信息/弱信息先验。
66 3
贝叶斯统计中常见先验分布选择方法总结
|
3月前
|
自然语言处理 数据挖掘
数据特征包括分布特征、统计特征、对比特征、帕累托特征和文本特征
数据特征包括分布特征、统计特征、对比特征、帕累托特征和文本特征
116 4
|
7月前
|
机器学习/深度学习 存储 数据可视化
MambaOut:状态空间模型并不适合图像的分类任务
该论文研究了Mamba架构(含状态空间模型SSM)在视觉任务(图像分类、目标检测、语义分割)中的必要性。实验表明,Mamba在这些任务中效果不如传统卷积和注意力模型。论文提出,SSM更适合长序列和自回归任务,而非视觉任务。MambaOut(不带SSM的门控CNN块)在图像分类上优于视觉Mamba,但在检测和分割任务中略逊一筹,暗示SSM在这类任务中可能仍有价值。研究还探讨了Mamba在处理长序列任务时的效率和局部信息整合能力。尽管整体表现一般,但论文为优化不同视觉任务的模型架构提供了新视角。
109 2
|
7月前
|
机器学习/深度学习 算法 数据可视化
Python用KNN(K-近邻)回归、分类、异常值检测预测房价、最优K值选取、误差评估可视化
Python用KNN(K-近邻)回归、分类、异常值检测预测房价、最优K值选取、误差评估可视化
|
7月前
|
数据可视化 索引 Python
数据分享|Python用PyMC3贝叶斯模型平均BMA:采样、信息准则比较和预测可视化灵长类动物的乳汁成分数据
数据分享|Python用PyMC3贝叶斯模型平均BMA:采样、信息准则比较和预测可视化灵长类动物的乳汁成分数据
|
7月前
|
机器学习/深度学习 算法
R语言非参数方法:使用核回归平滑估计和K-NN(K近邻算法)分类预测心脏病数据
R语言非参数方法:使用核回归平滑估计和K-NN(K近邻算法)分类预测心脏病数据
|
7月前
|
机器学习/深度学习 XML 编解码
ENVI实现最小距离法、最大似然法、支持向量机遥感图像监督分类与分类后处理操作
ENVI实现最小距离法、最大似然法、支持向量机遥感图像监督分类与分类后处理操作
313 1
|
机器学习/深度学习 自然语言处理 算法
【网安AIGC专题11.1】11 Coreset-C 主动学习:特征选择+11种采样方法+CodeBERT、GraphCodeBERT+多分类(问题分类)二元分类(克隆检测)非分类任务(代码总结)
【网安AIGC专题11.1】11 Coreset-C 主动学习:特征选择+11种采样方法+CodeBERT、GraphCodeBERT+多分类(问题分类)二元分类(克隆检测)非分类任务(代码总结)
206 0
gtsummary | 绘制回归模型结果表
gtsummary | 绘制回归模型结果表
122 0