C语言:函数递归

简介: C语言:函数递归

                                                  创作不易,给个三连吧!!

一、什么是递归

递归式一种解决问题的方法,在C语言中,递归就是自己调用自己。

递归的思想: 把⼀个⼤型复杂问题层层转化为⼀个与原问题相似,但规模较小的⼦问题来求解;直到⼦问题不能再被拆分,递归就结束了。所以递归的思考⽅式就是把⼤事化小的过程。

递归中的递就是递推的意思,归就是回归的意思

int main()
{
 printf("hehe\n");
 main();//main函数中⼜调⽤了main函数
 return 0;
}

以上就是一个简答的递归程序(自己调用自己),但是最后代码会陷入死递归,导致栈溢出(stack overflow)

所以递归必须要有自己的限制条件!而不能无限制地递归

二、递归的限制条件

为了防止死递归,有2个必要条件:

1、递归存在限制条件,当满足这个条件的时候,递归便不再继续(也就是说,我们要设置让递归停止下来的条件)

2、每次递归的调用要越来越接近这个限制条件(要慢慢让递归停下来)

三、递归的举例

3.1 求n的阶乘

我们知道n的阶乘的公式: n! =  n ∗ (n − 1)!

这样的思路就是把⼀个较⼤的问题,转换为⼀个与原问题相似,但规模较⼩的问题来求解的。

n!---> n*(n-1)! (n-1)! ---> (n-1)*(n-2)!.... 直到n是1或者0时,不再拆解

再稍微分析⼀下,当 n<=1 的时候,n的阶乘是1,其余n的阶乘都是可以通过上述公式计算。

n的阶乘的递归公式如下:

Fact(int n)
{
  if (n <= 0)
    return 1;
  else
    return n * Fact(n - 1);
}
int main()
{
  int n = 0;
  scanf("%d", &n);
  int ret=Fact(n);
  printf("%d", ret);
  return 0;
}

3.2 按顺序打印一个整数的每一位

       1234%10就能得到4,然后1234/10得到123,这就相当于去掉了4 然后继续对123%10,就得到了3,再除10去掉3,以此类推 不断的 %10 和 \10 操作,直到1234的每⼀位都得到; 但是这⾥有个问题就是得到的数字顺序是倒着的,我们以这个思路设想一个Print函数

Print(n)
如果n是1234,那表⽰为
Print(1234) //打印1234的每⼀位
其中1234中的4可以通过%10得到,那么
Print(1234)就可以拆分为两步:
1. Print(1234/10) //打印123的每⼀位
2. printf(1234%10) //打印4
完成上述2步,那就完成了1234每⼀位的打印
那么Print(123)⼜可以拆分为Print(123/10) + printf(123%10)

直到被打印的数字变成⼀位数的时候,就不需要再拆分,递归结束。

void Print(int n)
{
 if(n>9)
 {
 Print(n/10);
 }
 printf("%d ", n%10);
}
int main()
{
 int m = 0;
 scanf("%d", &m);
 Print(m);
 return 0;
}

3.3 斐波那契数列

第1个数和第2个数是1,从第3个数开始,后面每个数都是前两个数之和,所以当n大于2时,有Fib(n)=Fib(n-1)+Fib(n-2)

int Fib(int n)
{
 if(n<=2)
 return 1;
 else
 return Fib(n-1)+Fib(n-2);
}
int main()
{
 int n = 0;
 scanf("%d", &n);
int ret = Fib(n);
 printf("%d\n", ret); 
 return 0;
}

四、迭代

迭代,通常就是循环的方式

4.1 求n的阶乘

Fact(int n)
{
  int ret = 1;
  for (int i = 1; i <= n; i++)
    ret *= i;
  return ret;
}
int main()
{
  int n = 0;
    scanf("%d", &n);
    int ret=Fact(n);
    printf("%d", ret);
    return 0;
}

4.2 斐波那契数列

Fib(int n)
{
  int a = 1;
  int b = 1;
  int c = 1;
  while (n >= 3)
  {
    c = a + b;
    a = b;
    b = c;
    n--;
  }
  return c;
}
int main()
{
  int n = 0;
    scanf("%d", &n);
    int ret=Fib(n);
    printf("%d", ret);
    return 0;
}

五、递归与迭代的选择

      递归函数在有些时候是可以产生争取的结果,并且往往几行代码就可以完成大量的运算,但是在递归函数调用的过程中也会存在一些运行的开销。

      在C语⾔中每⼀次函数调⽤,都要需要为本次函数调⽤在栈区申请⼀块内存空间来保存函数调⽤期间 的各种局部变量的值,这块空间被称为运⾏时堆栈,或者函数栈帧。

      函数不返回,函数对应的栈帧空间就⼀直占⽤,所以如果函数调⽤中存在递归调⽤的话,每⼀次递归 函数调⽤都会开辟属于⾃⼰的栈帧空间,直到函数递归不再继续,开始回归,才逐层释放栈帧空间。

    所以如果采⽤函数递归的⽅式完成代码,递归层次太深,就会浪费太多的栈帧空间,也可能引起栈溢出(stack overflow)的问题。

    事实上,我们看到的许多问题是以递归的形式进⾏解释的,这只是因为它⽐⾮递归的形式更加清晰, 但是这些问题的迭代实现往往⽐递归实现效率更⾼。

     比如斐波那契数列,当我们使用递归的方法就解决时,如果输入50,需要很长的时间才能算出结果,因为递归程序会不断展开,在展开的过程中会有很多次的重复计算,而且递归层次越深,冗余计算就会越来越多。

#include <stdio.h>
int count = 0;
int Fib(int n)
{
 if(n == 3)
 count++;//统计第3个斐波那契数被计算的次数
 if(n<=2)
 return 1;
 else
 return Fib(n-1)+Fib(n-2);
}
int main()
{
 int n = 0;
 scanf("%d", &n);
 int ret = Fib(n);
 printf("%d\n", ret); 
 printf("\ncount = %d\n", count);
 return 0;
}

输入40   输出39088169    

     在计算第40个斐波那契数的时候,使⽤递归⽅式,第3个斐波那契数就被重复计算了 39088169次,这些计算是⾮常冗余的。所以斐波那契数的计算,使⽤递归是⾮常不明智的,所以迭代的效率会更优!!

    而当⼀个问题⾮常复杂,难以使⽤迭代的⽅式实现时,此时递归实现的简洁性便可以补偿它所带来的运⾏时开销。

   有时候,递归虽好,但是也会引入⼀些问题,所以我们⼀定不要迷恋递归,适可而止就好。

六、递归拓展问题

6.1 青蛙跳台阶问题

一个青蛙,一次只能跳一个台阶或者两个台阶,求跳n个台阶有几种跳法??

分析:

n=1,跳1次一个台阶,即jump(1)=1

n=2,可以跳2次一个台阶,也可以直接跳两个太极,即jump(2)=2

n=3,可以跳3次一个台阶,或者先跳1个台阶再跳2个台阶,或者先跳2个台阶再跳1个台阶,即jump(3)=3

n=4,可以 1111  22 2111 1211 1121 1112 即jump(4)=6

……

我们发现,当jump(3)时,如果第一次跳了1个台阶,剩下2个台阶的跳法相当于jump(2),如果第一个跳了2个台阶,剩下1个台阶的跳法相当于jump(1)

所以我们可以得到jump(3)=jump(1)+jump(2)

即jump(n)=jump(n-1)+jump(n-2)

递归:

jump(int n)
{
    assert(N>=0);
  if (n <= 2)
    return n;
  else
    return jump(n - 1) + jump(n - 2);
}
int main()
{
  int n = 0;
    scanf("%d", &n);
    int ret=jump(n);
    printf("%d", ret);
    return 0;
}

迭代:

jump(int n)
{
    assert(n>=0);
  int a = 1;
  int b = 2;
  int c = 0;
  if (n <= 2)
    return n;
  else
  {
    for (int i = 3; i <= n; i++)
    {
      c = a + b;
      a = b;
      b = c;
    }
    return c;
  }
}
int main()
{
  int n = 0;
  scanf("%d", &n);
  int ret = jump(n);
  printf("%d", ret);
  return 0;
}

6.2 汉诺塔问题

     简单的理解就是有三根柱子,其中一根柱子上有n个由上到下逐渐增大的圆盘,我们需要在保证圆盘始终是大圆盘在下,小圆盘在上的情况下每次移动一个圆盘,直到完成所有圆盘的移动。如图所示,要探究将n个圆盘从A挪动到C挪动的过程,以及挪动顺序

分析:

1个圆盘:A->C                   共1次

2个圆盘:A->B

               A->C

                B->C                   共3次

3个圆盘    A->C

                A->B

                C->B

               A->C

                B->A

                B->C

                A->C                       共7次

我们发现,最中间的次数恰好就是A->C即最大的圆盘移到C上,中间次数之前相当于将最大圆盘之上的n-1个圆盘放到辅助柱子B上,而中间次数之和的次数相当于将辅助B之上的n-1个圆盘放回C上,所以我们可以得到公式挪动次数:F(n)=F(n-1)+1+F(n-1)即F(n)=F(n-1)*2+1

F(int n)
{
  assert(n>=0);
  if (n==0)
    return 0;
  else
    return 2*F(n - 1)+1;
}

而挪动的过程我们封装2个函数

void Move(char a, char b, int n)
{
  //n代表第几个圆盘,a和b穿得是柱子的编号,表示从a柱子挪到b柱子
  printf("第%d个圆盘从%c柱挪动到%c柱\n", n, a, b);
}
void Hanoi(char a, char b, char c, int n)
//a表示圆盘所在的柱子,b表示移动圆盘的辅助柱子,c表示圆盘的目标柱子,n表示圆盘的个数
{
  assert(n >= 0);
  if (n ==1)
    Move(a, c, n);//直接将圆盘放到c上
  else
  {
    Hanoi(a, c, b, n - 1);//将前面n-1个圆盘通过C先挪动到B上
    Move(a, c, n);//将第n个圆盘放到c上
    Hanoi(b, a, c, n - 1);//将b上的n-1个圆盘通过a挪动到c上
  }
}

最后通过这三个函数完成计算汉诺塔问题的挪动次数以及挪动的过程!!

F(int n)//计算挪动次数
{
  assert(n>=0);
  if (n==0)
    return 0;
  else
    return 2*F(n - 1)+1;
}
void Move(char a, char b, int n)
{
  //n代表第几个圆盘,a和b穿得是柱子的编号,表示从a柱子挪到b柱子
  printf("第%d个圆盘从%c柱挪动到%c柱\n", n, a, b);
}
void Hanoi(char a, char b, char c, int n)
//a表示圆盘所在的柱子,b表示移动圆盘的辅助柱子,c表示圆盘的目标柱子,n表示圆盘的个数
{
  assert(n > 0);
  if (n == 1)
    Move(a, c, n);//将圆盘直接移动到c上
  else
  {
    Hanoi(a, c, b, n - 1);//将前面n-1个圆盘通过C先挪动到B上
    Move(a, c, n);//将第n个圆盘放到c上
    Hanoi(b, a, c, n - 1);//将b上的n-1个圆盘通过a挪动到c上
  }
}
int main()
{
  int n = 0;
  scanf("%d", &n);//输入圆盘数量
  char src = 'A';//a代表圆盘所在的柱子
  char ass = 'B';//b代表a->c的辅助柱子
  char dst = 'C';//c代表圆盘的目标柱子
  printf("挪动过程如下:\n");
  Hanoi(src,ass,dst, n);//挪动过程
  printf("挪动次数为%d次", F(n));//挪动次数
  return 0;
}

6.3 求1-n的全排列

     比如1、2、3、4、5,为了实现全排列,我们先将他放在一个数组中,我们先取第1个数,如果第1个数确定为2,那么第1个数是2的全排列就即为1345的全排列,第2个数可以取1345中的1个数,又可以等价于后三个数的全排列,以此类推……

因此,n个数的全排列=确定的第一位+(n-1)个数全排列=确定的前两位+(n-2)个数全排列=............

其中,确定某位是某数这一操作由——与后面的数依次交换-递归-换回——实现。

int count = 0;//利用全局变量计算总次数
void swap(int arr[], int a, int b)//交换下标为a  b的两个数
{
  int temp = arr[a];
  arr[a] = arr[b];
  arr[b] = temp;
}
void Perm(int arr[], int begin, int n)//n为最后一个数的角标,begin为数组从下标为几的数字开始
{
  assert(n > 0);
  if (begin == n)
  { //如果begin为最后一个元素开始,说明该层递归已经结束了,此次数组的顺序就是全排列的顺序
    for (int i = 0; i < n; i++)
      printf("%d-", arr[i]);
    printf("%d\n", arr[n]);
    count++;//利用全局变量计算总次数
  }
  else//如果begin还在前面,就要将begin与后面的数一次交换然后递归,每次递归完要回溯
  {
    for (int k = begin; k <= n; k++)
    {
      //begin与后面的数依次交换
      swap(arr, begin, k);
      //问题变成begin与后面的数进行全排列
      Perm(arr, begin + 1, n);
      //回溯
      swap(arr, begin, k);
    }
  }
}
int main()
{
  int* arr;
  int n;
  printf("请输入n:");
  scanf("%d", &n);
  arr = (int*)malloc(n*sizeof(int));
    //创建数组
  for (int i = 0; i < n; i++)
    arr[i] = i + 1;
  Perm(arr, 0, n - 1);//开始进行全排列
  printf("一共有%d种排列方式", count);
}

相关文章
|
7天前
|
存储 Serverless C语言
【C语言基础考研向】11 gets函数与puts函数及str系列字符串操作函数
本文介绍了C语言中的`gets`和`puts`函数,`gets`用于从标准输入读取字符串直至换行符,并自动添加字符串结束标志`\0`。`puts`则用于向标准输出打印字符串并自动换行。此外,文章还详细讲解了`str`系列字符串操作函数,包括统计字符串长度的`strlen`、复制字符串的`strcpy`、比较字符串的`strcmp`以及拼接字符串的`strcat`。通过示例代码展示了这些函数的具体应用及注意事项。
|
10天前
|
存储 C语言
C语言程序设计核心详解 第十章:位运算和c语言文件操作详解_文件操作函数
本文详细介绍了C语言中的位运算和文件操作。位运算包括按位与、或、异或、取反、左移和右移等六种运算符及其复合赋值运算符,每种运算符的功能和应用场景都有具体说明。文件操作部分则涵盖了文件的概念、分类、文件类型指针、文件的打开与关闭、读写操作及当前读写位置的调整等内容,提供了丰富的示例帮助理解。通过对本文的学习,读者可以全面掌握C语言中的位运算和文件处理技术。
|
10天前
|
存储 C语言
C语言程序设计核心详解 第七章 函数和预编译命令
本章介绍C语言中的函数定义与使用,以及预编译命令。主要内容包括函数的定义格式、调用方式和示例分析。C程序结构分为`main()`单框架或多子函数框架。函数不能嵌套定义但可互相调用。变量具有类型、作用范围和存储类别三种属性,其中作用范围分为局部和全局。预编译命令包括文件包含和宏定义,宏定义分为无参和带参两种形式。此外,还介绍了变量的存储类别及其特点。通过实例详细解析了函数调用过程及宏定义的应用。
|
16天前
|
Linux C语言
C语言 多进程编程(三)信号处理方式和自定义处理函数
本文详细介绍了Linux系统中进程间通信的关键机制——信号。首先解释了信号作为一种异步通知机制的特点及其主要来源,接着列举了常见的信号类型及其定义。文章进一步探讨了信号的处理流程和Linux中处理信号的方式,包括忽略信号、捕捉信号以及执行默认操作。此外,通过具体示例演示了如何创建子进程并通过信号进行控制。最后,讲解了如何通过`signal`函数自定义信号处理函数,并提供了完整的示例代码,展示了父子进程之间通过信号进行通信的过程。
|
16天前
|
C语言
C语言 字符串操作函数
本文档详细介绍了多个常用的字符串操作函数,包括 `strlen`、`strcpy`、`strncpy`、`strcat`、`strncat`、`strcmp`、`strncpy`、`sprintf`、`itoa`、`strchr`、`strspn`、`strcspn`、`strstr` 和 `strtok`。每个函数均提供了语法说明、参数解释、返回值描述及示例代码。此外,还给出了部分函数的自实现版本,帮助读者深入理解其工作原理。通过这些函数,可以轻松地进行字符串长度计算、复制、连接、比较等操作。
|
17天前
|
SQL 关系型数据库 C语言
PostgreSQL SQL扩展 ---- C语言函数(三)
可以用C(或者与C兼容,比如C++)语言编写用户自定义函数(User-defined functions)。这些函数被编译到动态可加载目标文件(也称为共享库)中并被守护进程加载到服务中。“C语言函数”与“内部函数”的区别就在于动态加载这个特性,二者的实际编码约定本质上是相同的(因此,标准的内部函数库为用户自定义C语言函数提供了丰富的示例代码)
|
1月前
|
C语言
【C语言】字符串及其函数速览
【C语言】字符串及其函数速览
23 4
|
28天前
|
机器学习/深度学习 编译器 Serverless
C语言中函数
C语言中函数
19 0
|
28天前
|
存储 Serverless C语言
C语言中的标准库函数
C语言中的标准库函数
23 0
|
30天前
|
算法 编译器 C语言
【C语言】递归
【C语言】递归
11 0