如何优化因为高亮造成的大文本(大字段)检索缓慢问题

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 如何优化因为高亮造成的大文本(大字段)检索缓慢问题

首先还是说一下背景,工作中用到了 elasticsearch 的检索以及高亮展示,但是索引中的content字段是读取的大文本内容,所以后果就是索引的单个字段很大,造成单独检索请求的时候速度还可以,但是加入高亮之后检索请求的耗时就非常的慢了。所以本文从更换高亮器类型的角度来解决因为高亮造成的检索请求缓慢的问题。

ES的抵消策略

在文章开始前先简单介绍一个elasticsearch的策略,为了在检索的字段中创建出一个有意义的高亮片段,高亮器会使用原始文本的开始和结束字符串的偏移量,偏移量的获取可以从一下方式获得

  • postings list:如果在mappingindex_options设置为offsetsunified高亮器使用此信息高亮显示文档而不用再次分析文本。
  • term vectors:如果我们在mapping中设置term_vectorwith_positions_offsets,则unified高亮器会自动使用term_vector来高亮显示,对于大于1M的大字段,使用term_vector速度会很快,fvh高亮器就是使用的term_vector
  • plain highlighting:当unified没有其他的选择的时候会使用plain模式,它会创建了一个微小的内存索引,并通过Lucene的查询执行计划器重新运行原始查询条件。plain高亮器默认使用的就是此模式

大文本的纯高亮展示可能需要大量的时间和内存,为了防止这种情况,es默认将大文本的字符数量限制为1000000,可以使用index.highlight.max_analyzed_offset修改此默认设置

一、FVH高亮器简介

FVH(Fast Vector Highlighter)是Elasticsearch高亮器中的一种算法,使用的是Lucene Fast Vector highlighter,它能够快速而准确地在文本中找到匹配的关键词,并将其标记为高亮。相比于其他高亮器算法,FVH在性能上有着显著的优势,特别适用于大规模数据集和高并发的场景。

二、FVH高亮器的使用方法

安装

首先,确保已经正确安装了 Elasticsearch

version: '3.8'
services:
  cerebro:
    image: lmenezes/cerebro:0.8.3
    container_name: cerebro
    ports:
     - "9000:9000"
    command:
     - -Dhosts.0.host=http://eshot:9200
    networks:
     - elastic
  kibana:
    image: docker.elastic.co/kibana/kibana:8.1.3
    container_name: kibana
    environment:
      - I18N_LOCALE=zh-CN
      - XPACK_GRAPH_ENABLED=true
      - TIMELION_ENABLED=true
      - XPACK_MONITORING_COLLECTION_ENABLED="true"
      - ELASTICSEARCH_HOSTS=http://eshot:9200
      - server.publicBaseUrl=http://192.168.160.234:5601
    ports:
      - "5601:5601"
    networks:
      - elastic
  eshot:
    image: elasticsearch:8.1.3
    container_name: eshot
    environment:
      - node.name=eshot
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=eshot,eswarm,escold
      - cluster.initial_master_nodes=eshot,eswarm,escold
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
      - xpack.security.enabled=false
      - node.attr.node_type=hot
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - D:\zuiyuftp\docker\es8.1\eshot\data:/usr/share/elasticsearch/data
      - D:\zuiyuftp\docker\es8.1\eshot\logs:/usr/share/elasticsearch/logs
      - D:\zuiyuftp\docker\es8.1\eshot\plugins:/usr/share/elasticsearch/plugins
    ports:
      - 9200:9200
    networks:
      - elastic
  eswarm:
    image: elasticsearch:8.1.3
    container_name: eswarm
    environment:
      - node.name=eswarm
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=eshot,eswarm,escold
      - cluster.initial_master_nodes=eshot,eswarm,escold
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
      - xpack.security.enabled=false
      - node.attr.node_type=warm
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - D:\zuiyuftp\docker\es8.1\eswarm\data:/usr/share/elasticsearch/data
      - D:\zuiyuftp\docker\es8.1\eswarm\logs:/usr/share/elasticsearch/logs
      - D:\zuiyuftp\docker\es8.1\eshot\plugins:/usr/share/elasticsearch/plugins
    networks:
      - elastic
  escold:
    image: elasticsearch:8.1.3
    container_name: escold
    environment:
      - node.name=escold
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=eshot,eswarm,escold
      - cluster.initial_master_nodes=eshot,eswarm,escold
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
      - xpack.security.enabled=false
      - node.attr.node_type=cold
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - D:\zuiyuftp\docker\es8.1\escold\data:/usr/share/elasticsearch/data
      - D:\zuiyuftp\docker\es8.1\escold\logs:/usr/share/elasticsearch/logs
      - D:\zuiyuftp\docker\es8.1\eshot\plugins:/usr/share/elasticsearch/plugins
    networks:
      - elastic
# volumes:
#   eshotdata:
#     driver: local
#   eswarmdata:
#     driver: local
#   escolddata:
#     driver: local
networks:
  elastic:
    driver: bridge

创建索引

在使用FVH高亮器之前,需要先创建一个索引,并将需要高亮的字段进行映射。例如,我们要在content字段中进行高亮,可以使用以下代码:

PUT /example_target
{
  "mappings": {
    "properties": {
      "content": {
        "type": "text",
        "analyzer": "ik_max_word",
        "term_vector": "with_positions_offsets"
      },
      "title": {
        "type": "text",
        "analyzer": "ik_max_word",
        "term_vector": "with_positions_offsets"
      }
    }
  }
}

添加测试数据

POST example_target/_doc
{
  "content":"中华人民共和国是否考虑是否就爱上速度加快分解ask计算机卡死撒中华上的飞机拉丝机是的地方记录 卡就是开发建设看积分卡说了句 ask就疯狂萨拉丁就发士大 sdf 看得见啊李开复 圣诞节卡了 夫哈数据库中华啊,中华,人民爱上中华",
  "title":"中华人名共和国"
}

查询并高亮

使用FVH高亮器进行查询和高亮的过程如下所示:

GET example_target/_search
{
  "query": {
    "match": {
      "content": "中华 爱上"
    }
  },
  "highlight": {
    "pre_tags": "<em>",
    "post_tags": "</em>", 
    "require_field_match": "false", 
    "fields": {
      "content": {
         "type": "fvh",
        "fragment_size": 18,
        "number_of_fragments": 3
      }
    }
  }
}

以上代码中,我们通过match查询找到了包含关键词的文档,然后在highlight内容中指定了需要高亮的字段,这里是content。执行述查询后,Elasticsearch将返回匹配的结果,并在content字段中添加了高亮标记。

数据量少的时候对比不是特别明显,所以在测试时,可以在索引中添加大量的测试数据进行测试,本人在测试过程中es的索引大小在500M左右,单个字段纯文本大小也有1-2M。此时这种数据规模下使用普通的高亮器在检索请求时就已经非常缓慢了,根据返回的数据量多少来决定,在取10条数据时已经能达到6秒了,但是在使用fvh高亮器之后时间已经进入毫秒级

三、FVH高亮器的参数配置

先看一下返回的数据结果在对照下面参数学习

{
  "took" : 4,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 3,
      "relation" : "eq"
    },
    "max_score" : 0.41193593,
    "hits" : [
      {
        "_index" : "example_target",
        "_id" : "f1rkC4oBCDmhQc2yo6PQ",
        "_score" : 0.41193593,
        "_source" : {
          "content" : "中华人民共和国是否考虑是否就爱上速度加快分解ask计算机卡死撒中华上的飞机拉丝机是的地方记录 卡就是开发建设看积分卡说了句 ask就疯狂萨拉丁就发士大 sdf 看得见啊李开复 圣诞节卡了 夫哈数据库中华啊,中华,人民爱上中华"
        },
        "highlight" : {
          "content" : [
            "<em>中华</em>人民共和国是否考虑是否就<em>爱上</em>速度",
            "sk计算机卡死撒<em>中华</em>上的飞机拉丝机是的地方记录",
            "夫哈数据库<em>中华</em>啊,<em>中华</em>,人民<em>爱上</em>中华"
          ]
        }
      },
      {
        "_index" : "example_target",
        "_id" : "G3Fi44kB4IVEhjafHXOf",
        "_score" : 0.33311102,
        "_source" : {
          "content" : "中华人民共和国是否考虑是否就爱上速度加快分解ask计算机卡死撒中华上的飞机拉丝机是的地方记录卡就是开发建设看积分卡说了句ask就疯狂萨拉丁就发士大夫哈数据库"
        },
        "highlight" : {
          "content" : [
            "<em>中华</em>人民共和国是否考虑是否就<em>爱上</em>速度",
            "sk计算机卡死撒<em>中华</em>上的飞机拉丝机是"
          ]
        }
      },
      {
        "_index" : "example_target",
        "_id" : "HHFt44kB4IVEhjafE3Ov",
        "_score" : 0.31932122,
        "_source" : {
          "content" : "中华人民共和国是否考虑是否就爱上速度加快分解ask计算机卡死撒中华上的飞机拉丝机是的地方记录 卡就是开发建设看积分卡说了句 ask就疯狂萨拉丁就发士大 sdf 看得见啊李开复 圣诞节卡了 夫哈数据库"
        },
        "highlight" : {
          "content" : [
            "<em>中华</em>人民共和国是否考虑是否就<em>爱上</em>速度",
            "sk计算机卡死撒<em>中华</em>上的飞机拉丝机是的地方记录"
          ]
        }
      }
    ]
  }
}

通过上面的查询请求中高亮参数的指定可以发现,高亮器还是支持其他的参数的,那么我们下面将对几个常用的参数进行说明

  • fragment_size:指定每个高亮片段的长度,默认为100个字符。
  • number_of_fragments:指定返回的高亮片段数量,默认为5个。
  • pre_tagspost_tags:分别指定高亮标记的前缀和后缀,默认为<em></em>
  • require_field_match:指定是否要求所有字段都匹配关键词才进行高亮,默认为true。可以开启关闭此参数对上面的title字段进行校验
  • type:指定fvh高亮器,除了fvh之外还有unifiedplain
  • unified 是默认的高亮器,可以将文本分解为句子,并使用BM25算法对单个句子进行评分,还支持精确的短语高亮显示,支持(fuzzyprefixregex)高亮。
  • plain 普通的高亮器,适用与简单的查询或者单个字段的匹配。为了准确的反应查询逻辑,它会在内存中创建一个很小的索引,来对原始的查询语句进行执行,来访问当前更低级别的匹配信息。

在使用FVH高亮器时,根据实际需求,可以灵活地调整这些参数,以获得最佳的高亮效果。

总结

通过本文的介绍,我们了解了Elasticsearch高亮器中的FVH算法,并学会了如何使用它为搜索结果增添亮点。FVH高亮器在性能和功能上都有着明显的优势,对于大规模数据集和高并发的场景尤为适用。希望读者通过本文的指引,能够更好地利用FVH高亮器来提升搜索结果的可读性和用户体验。

参考链接

https://www.elastic.co/guide/en/elasticsearch/reference/8.1/highlighting.html

如果感觉本文对你有所帮助欢迎点赞评论转发收藏。如果你想了解更多关于ES的骚操作,更多实战经验,欢迎关注。


相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
目录
相关文章
|
8月前
|
存储 自然语言处理 算法
高维向量压缩方法IVFPQ :通过创建索引加速矢量搜索
向量相似性搜索是从特定嵌入空间中的给定向量列表中找到相似的向量。它能有效地从大型数据集中检索相关信息,在各个领域和应用中发挥着至关重要的作用。
389 0
|
3月前
|
自然语言处理 资源调度 前端开发
前端大模型入门(四):不同文本分割器对比和效果展示-教你如何根据场景选择合适的长文本分割方式
本文详细介绍了五种Langchain文本分割器:`CharacterTextSplitter`、`RecursiveCharacterTextSplitter`、`TokenTextSplitter`、`MarkdownTextSplitter` 和 `LatexTextSplitter`,从原理、优缺点及适用场景等方面进行了对比分析,旨在帮助开发者选择最适合当前需求的文本分割工具,提高大模型应用的处理效率和效果。
273 1
|
5月前
|
存储 人工智能 自然语言处理
知识库优化增强,支持多种数据类型、多种检索策略、召回测试 | Botnow上新
Botnow近期对其知识库功能进行了全面升级,显著提升了数据处理能力、检索效率及准确性。新版本支持多样化的数据格式,包括PDF、Word、TXT、Excel和CSV等文件,无需额外转换即可直接导入,极大地丰富了知识来源。此外,还新增了细致的文本分片管理和编辑功能,以及表格数据的结构化处理,使知识管理更为精细化。 同时,平台提供了多种检索策略,包括混合检索、语义检索和全文检索等,可根据具体需求灵活选择,有效解决了大模型幻觉问题,增强了专业领域的知识覆盖,从而显著提高了回复的准确性。这些改进广泛适用于客服咨询、知识问答等多种应用场景,极大提升了用户体验和交互质量。
103 4
|
机器学习/深度学习 自然语言处理 安全
【网安专题11.8】14Cosco跨语言代码搜索代码: (a) 训练阶段 相关程度的对比学习 对源代码(查询+目标代码)和动态运行信息进行编码 (b) 在线查询嵌入与搜索:不必计算相似性
【网安专题11.8】14Cosco跨语言代码搜索代码: (a) 训练阶段 相关程度的对比学习 对源代码(查询+目标代码)和动态运行信息进行编码 (b) 在线查询嵌入与搜索:不必计算相似性
284 0
|
8月前
|
存储 数据处理 索引
大文本的全文检索方案附件索引
大文本的全文检索方案附件索引
138 0
|
8月前
|
分布式计算 Java Hadoop
MapReduce编程:检索特定群体搜索记录和定义分片操作
MapReduce编程:检索特定群体搜索记录和定义分片操作
74 0
|
人工智能 自然语言处理 算法
Similarities:精准相似度计算与语义匹配搜索工具包,多维度实现多种算法,覆盖文本、图像等领域,支持文搜、图搜文、图搜图匹配搜索
Similarities:精准相似度计算与语义匹配搜索工具包,多维度实现多种算法,覆盖文本、图像等领域,支持文搜、图搜文、图搜图匹配搜索
Similarities:精准相似度计算与语义匹配搜索工具包,多维度实现多种算法,覆盖文本、图像等领域,支持文搜、图搜文、图搜图匹配搜索
|
JavaScript
计算属性实现模糊搜索功能场景
我相信大家在项目中都会遇到模糊搜索这个功能要求,即我们在输入框内输入文字后显示与输入文字相关的关键字,那这个具体实现方案是什么,这是我在最近一期蓝桥杯楼赛中遇到的业务需求,大家可以来思考一下,下面我将进行实现详解
150 2
计算属性实现模糊搜索功能场景
|
自然语言处理 Java
如何使用ES更有效率的进行多字段模糊匹配
如何使用ES更有效率的进行多字段模糊匹配
|
存储 JSON 缓存
你必须知道的23个最有用的Elasticseaerch检索技巧
题记 本文详细论述了Elasticsearch全文检索、指定字段检索实战技巧,并提供了详尽的源码举例。是不可多得学习&实战资料。
249 0

热门文章

最新文章