Nested嵌套对象类型还挺实用

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: Nested嵌套对象类型还挺实用

上一篇文章中,我们学习了Join类型的父子文档,今天继续学习一下嵌套文档,毕竟嵌套文档也是Elasticsearch推荐的,首先我们看下面这条语句

PUT word_document/_doc/1
{
  "title" : "up",
  "user" : [ 
    {
      "name" : "honghong",
      "sex" :  "female",
      "numberOfLikes":500
    },
    {
      "name" : "mingming",
      "sex" :  "male",
      "numberOfLikes":50
    },
    {
      "name" : "lanlan",
      "sex" :  "male",
      "numberOfLikes":100
    }
  ]
}

对于上面这种格式的数据,user就是嵌套对象数组,那么userElasticsearch中是怎么存储的呢?如果我们要对嵌套的子对象进行检索,怎么才能检索出我们所需要的数据呢,下面我们就一起来研究下Nested数据类型

环境

  • macos 10.14.6
  • Elasticsearch 8.1
  • Kibana 8.1

Nested

开头我们还是先了解一下,什么是Nested类型,其实就是字面意思,Nested就是嵌套,也就是文章开头user数据类型那种,所以可以看为是一种特殊的Object类型。还是以文章开头的数据为例

PUT word_document/_doc/1
{
  "title" : "up",
  "user" : [ 
    {
      "name" : "honghong",
      "sex" :  "female",
      "numberOfLikes":500
    },
    {
      "name" : "mingming",
      "sex" :  "male",
      "numberOfLikes":50
    },
    {
      "name" : "lanlan",
      "sex" :  "male",
      "numberOfLikes":100
    }
  ]
}

如果我们没有对word_document索引进行显示设置数据类型,在上面这个语句执行之后,Elasticsearch会默认推断数据类型,在Elasticsearch中内容会转换为可能如下的形式,扁平化的处理数据

{
  "title":"up",
  "user.name":["honghong","mingming","lanlan"],
  "user.sex":["male","male","female"],
  "user.numberOfLikes":[500,50,100]
}

相信大家也看出来了,如果被Elasticsearch转换成上面的这种数据结构之后,我们的搜索结果是会被影响的,假如我们使用如下这个语句进行查询,我们想搜索namehonghongsexmale,预期结果是没有匹配的文档,但是因为Elasticsearch对上述的结果进行了扁平化的处理,造成了错误的匹配

GET word_document/_search
{
  "query": {
    "bool": {
      "must": [
        { "match": { "user.name": "honghong" }},
        { "match": { "user.sex":  "male" }}
      ]
    }
  }
}

如何避免上述情况的发生呢,那就是使用Elasticsearch提供的Nested数据类型,Nested 数据类型保证了嵌套对象的独立性,也就是让我们可以对嵌套对象的内容进行检索,从而不会发生上述的这种情况

  • 首先我们还是以上面文档为例,不过是这次我们优先创建索引,并指定user字段为nested
PUT word_document
{
  "mappings": {
    "properties": {
      "title":{
        "type": "keyword"
        },
      "user": {
        "type": "nested" 
      },
      "numberOfLikes":{
        "type": "integer"
      }
    }
  }
}
  • 下面加入我们的测试数据,来验证我们的搜索语句
PUT word_document/_doc/1
{
  "title" : "up",
  "user" : [ 
    {
      "name" : "honghong",
      "sex" :  "female",
      "numberOfLikes":500
    },
    {
      "name" : "mingming",
      "sex" :  "male",
      "numberOfLikes":50
    },
    {
      "name" : "lanlan",
      "sex" :  "male",
      "numberOfLikes":100
    }
  ]
}
PUT word_document/_doc/2
{
  "title" : "up",
  "user" : [ 
      {
      "name" : "honghong",
      "sex" :  "female",
      "numberOfLikes":20
    },
    {
      "name" : "mingming",
      "sex" :  "male",
      "numberOfLikes":30
    },
    {
      "name" : "lanlan",
      "sex" :  "male",
      "numberOfLikes":50
    }
  ]
}
PUT word_document/_doc/3
{
  "title" : "up",
  "user" : [ 
    {
      "name" : "honghong",
      "sex" :  "female",
      "numberOfLikes":50
    },
    {
      "name" : "mingming",
      "sex" :  "male",
      "numberOfLikes":50
    },
    {
      "name" : "lanlan",
      "sex" :  "male",
      "numberOfLikes":50
    }
  ]
}
  • 下面还是刚才那个搜索语句,此时就不会有匹配的文档返回,返回结果为空
GET word_document/_search
{
  "query": {
    "nested": {
      "path": "user",
      "query": {
        "bool": {
          "must": [
            { "match": { "user.name": "honghong" }},
            { "match": { "user.sex":  "male" }} 
          ]
        }
      }
    }
  }
}
  • 那么对于嵌套文档我们可以怎么查询呢,那就是指定nested查询类型,使用普通的查询是查询不到的哦,nested查询语句如下所示,此时返回的就是我们
GET word_document/_search
{
  "query": {
    "nested": {
      "path": "user",
      "query": {
        "bool": {
          "must": [
            { "match": { "user.name": "honghong" }},
            { "match": { "user.sex":  "female" }} 
          ]
        }
      },
      "inner_hits": { 
        "highlight": {
          "fields": {
            "user.name": {}
          }
        }
      }
    }
  }
}
  • 此外我们还可以根据嵌套对象中的字段进行排序,升序时获取嵌套对象中最小的值最为比较值,降序时获取嵌套对象最大的值作为比较值
GET word_document/_search
{
  "query": {
    "nested": {
      "path": "user",
      "query": {
        "match": {
          "user.sex": "male"
        }
      }
    }
  },
  "sort":[
    {
      "user.numberOfLikes": {
        "order": "asc", 
        "nested": {
          "path":"user"
        }
      }
    }
    ]
}
  • 返回如下
{
  "took" : 101,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 3,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [
      {
        "_index" : "word_document",
        "_id" : "2",
        "_score" : null,
        "_source" : {
          "title" : "up",
          "user" : [
            {
              "name" : "honghong",
              "sex" : "female",
              "numberOfLikes" : 20
            },
            {
              "name" : "mingming",
              "sex" : "male",
              "numberOfLikes" : 30
            },
            {
              "name" : "lanlan",
              "sex" : "male",
              "numberOfLikes" : 50
            }
          ]
        },
        "sort" : [
          20
        ]
      },
      {
        "_index" : "word_document",
        "_id" : "1",
        "_score" : null,
        "_source" : {
          "title" : "up",
          "user" : [
            {
              "name" : "honghong",
              "sex" : "female",
              "numberOfLikes" : 500
            },
            {
              "name" : "mingming",
              "sex" : "male",
              "numberOfLikes" : 50
            },
            {
              "name" : "lanlan",
              "sex" : "male",
              "numberOfLikes" : 100
            }
          ]
        },
        "sort" : [
          50
        ]
      },
      {
        "_index" : "word_document",
        "_id" : "3",
        "_score" : null,
        "_source" : {
          "title" : "up",
          "user" : [
            {
              "name" : "honghong",
              "sex" : "female",
              "numberOfLikes" : 50
            },
            {
              "name" : "mingming",
              "sex" : "male",
              "numberOfLikes" : 50
            },
            {
              "name" : "lanlan",
              "sex" : "male",
              "numberOfLikes" : 50
            }
          ]
        },
        "sort" : [
          50
        ]
      }
    ]
  }
}
  • 我们也可以对嵌套对象进行聚合操作,如下我们获取索引中user.name=honghong,user.sex=female的所有文档,聚合统计numberOfLikes的最小值
GET word_document/_search
{
  "query": {
    "nested": {
      "path": "user",
      "query": {
        "bool": {
          "must": [
            {
              "match": {
                "user.name": "honghong"
              }
            },
            {
              "match": {
                "user.sex": "female"
              }
            }
          ]
        }
      }
    }
  },
  "aggs": {
    "my_min_value": {
      "nested": {
        "path": "user"
      }, 
      "aggs": {
        "min_value": {
          "min": {
            "field": "user.numberOfLikes"
          }
        }
      }
    }
  }
}
  • 上面的聚合统计只是对外部的文档过滤,那如果我们有这么一个需求,聚合统计嵌套对象user内容sex=male的最小值,那么我们可以使用如下filter,下面这个语句优先过滤title=up的文档,聚合统计user.sex=malenumberOfLikes最小值
GET /word_document/_search?size=0
{
  "query": {
    "match": {
      "title": "up"
    }
  },
  "aggs": {
    "my_user": {
      "nested": {
        "path": "user"
      },
      "aggs": {
        "filter_my_user": {
          "filter": {
            "bool": {
              "filter": [
                {
                  "match": {
                    "user.sex": "male"
                  }
                }
              ]
            }
          },
          "aggs": {
            "min_price": {
              "min": {
                "field": "user.numberOfLikes"
              }
            }
          }
        },
        "no_filter_my_user":{
          "min": {
            "field": "user.numberOfLikes"
          }
        }
      }
    }
  }
}
  • 最后还有一种就是反向嵌套聚合,通过嵌套对象聚合父文档,返回父文档信息
    首先我们还是先创建一个索引添加几条数据用来测试
PUT /issues
{
  "mappings": {
    "properties": {
      "tags": { "type": "keyword" },
      "comments": {                            
        "type": "nested",
        "properties": {
          "username": { "type": "keyword" },
          "comment": { "type": "text" }
        }
      }
    }
  }
}
PUT /issues/_doc/1
{
  "tags":"跳舞",
  "comments":[{
    "username":"小李",
    "comment":"小李想学跳舞"
  },
  {
    "username":"小红",
    "comment":"小红跳舞很有天赋"
  }
  ]
}
PUT /issues/_doc/2
{
  "tags":"唱歌",
  "comments":[{
    "username":"小李",
    "comment":"小李会唱歌"
  },
  {
    "username":"小李",
    "comment":"小李唱歌有天赋"
  },
  {
    "username":"小红",
    "comment":"小红是歌手"
  }
  ]
}
PUT /issues/_doc/3
{
  "tags":"跳舞",
  "comments":[
  {
    "username":"小红",
    "comment":"小红会跳舞"
  },
  {
    "username":"小红",
    "comment":"小红是舞神"
  }
  ]
}
PUT /issues/_doc/4
{
  "tags":"唱歌",
  "comments":[
  {
    "username":"小李",
    "comment":"小李简直就是天生歌手"
  }
  ]
}
PUT /issues/_doc/5
{
  "tags":"跳舞",
  "comments":[
  {
    "username":"小红",
    "comment":"小红舞姿很美"
  }
  ]
}

issues 问题;tags 标签;username 名字;comment 评论;

  • 下面我们使用反向嵌套聚合父文档,需求如下:
    1、先聚合统计出评论最多的username
    2、在聚合统计usernamecomment最多的tag
GET /issues/_search?size=0
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "comments": {
      "nested": {
        "path": "comments"
      },
      "aggs": {
        "top_usernames": {
          "terms": {
            "field": "comments.username"
          },
          "aggs": {
            "comment_to_issue": {
              "reverse_nested": {}, 
              "aggs": {
                "top_tags_per_comment": {
                  "terms": {
                    "field": "tags"
                  }
                }
              }
            }
          }
        }
      }
    }
  }
}
  • 结果如下,得出结论:小红评论次数最多,评论了5次,小红评论最多的标签是跳舞,有3次
{
  "aggregations" : {
    "comments" : {
      "doc_count" : 9,
      "top_usernames" : {
        "doc_count_error_upper_bound" : 0,
        "sum_other_doc_count" : 0,
        "buckets" : [
          {
            "key" : "小红",
            "doc_count" : 5,
            "comment_to_issue" : {
              "doc_count" : 4,
              "top_tags_per_comment" : {
                "doc_count_error_upper_bound" : 0,
                "sum_other_doc_count" : 0,
                "buckets" : [
                  {
                    "key" : "跳舞",
                    "doc_count" : 3
                  },
                  {
                    "key" : "唱歌",
                    "doc_count" : 1
                  }
                ]
              }
            }
          },
          {
            "key" : "小李",
            "doc_count" : 4,
            "comment_to_issue" : {
              "doc_count" : 3,
              "top_tags_per_comment" : {
                "doc_count_error_upper_bound" : 0,
                "sum_other_doc_count" : 0,
                "buckets" : [
                  {
                    "key" : "唱歌",
                    "doc_count" : 2
                  },
                  {
                    "key" : "跳舞",
                    "doc_count" : 1
                  }
                ]
              }
            }
          }
        ]
      }
    }
  }
}

Nested 支持的参数有哪些

Nested也只是特殊的Object的一种,也是有支持的几种参数

  • dynamic: (可选参数) 是否允许在索引 mapping文件未定义字段的情况下对新字段的处理,默认是加入到现有的嵌套对象中( true),还支持 falsestrict
  • properties: (可选参数) 嵌套对象字段内容属性设置
  • include_in_parent:(可选参数) 默认 false,如果为 true,嵌套对象的字段也会作为普通字段的形式( flat)添加到父文档
  • include_in_root:(可选参数) 默认 false,如果为 true,嵌套对象的字段也会作为普通字段的形式( flat)添加到根文档

Nested 类型的约束

通过前面的学习,我们也知道了nested类型可以作为一个单独的Lucene文档进行所有,当我们有100个嵌套对象的时候我们需要101个文档来存储映射关系,一个用于父文档,一个用于嵌套文档,所以这一部分的开销,ELasticsearch来通过一下设置进行了约束

  • index.mapping.nested_fields.limit
    一个索引中,嵌套类型字段(nested)最多存在多个限制,默认50个,如我们上面的例子中,也就是只占用了一个
  • index.mapping.nested_objects.limit
    一个索引中,单个嵌套类型字段包含的嵌套JSON对象的最大数量,默认10000

总结

通过上面的学习实践,我们可以知道Nested嵌套类型是Elasticsearch推荐的相对于Join类型,并且Nested可以实现查询,聚合,排序等,基本满足了工作的需要。好了,到这就结束吧,有什么需要深入了解的,留言哦,也可以去官网查看,毕竟官网还是一手资料,博主的也只能算是入门启蒙笔记,实践起来吧,加油!


相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
目录
相关文章
if语句的嵌套
if语句的嵌套。
132 1
|
5月前
|
存储
访问者模式问题之在 extractFunctions 方法中, FunctionCallExpression 类型的 Expression如何处理
访问者模式问题之在 extractFunctions 方法中, FunctionCallExpression 类型的 Expression如何处理
|
5月前
|
SQL 存储
访问者模式问题之LiteralExpression 类中的 literal 属性是用来做啥的
访问者模式问题之LiteralExpression 类中的 literal 属性是用来做啥的
|
8月前
|
索引
单列集合顶层接口Collection
单列集合顶层接口Collection
44 1
|
8月前
|
C++
C++中使用嵌套的if语句
C++中使用嵌套的if语句
74 1
|
8月前
|
C#
C#学习相关系列之数据类型类----嵌套类和嵌套方法(三)
C#学习相关系列之数据类型类----嵌套类和嵌套方法(三)
MybatisPlus条件构造器 多个组合OR嵌套拼接写法
MybatisPlus条件构造器 多个组合OR嵌套拼接写法
781 0
|
前端开发
less语法(一)变量与extend
less语法(一)变量与extend
函数的嵌套
# 输出:输出我在中国(大函数) 北京(小函数) def func_big(country): def func_small(city): print('我在%s,城市是%s' % (country, city)) func_small('北京') fu...
938 0
重构——38以卫语句取代嵌套条件表达式(Replace Nested Conditional with Guard Clause)
以卫语句取代嵌套条件表达式(Replace Nested Conditional with Guard Clause):函数中的条件逻辑使人难以看清正常的执行路径;使用卫语句表现所有特殊情况
3814 0

热门文章

最新文章