m基于Faster-RCNN网络的人员摔倒检测系统matlab仿真,带GUI操作界面

简介: m基于Faster-RCNN网络的人员摔倒检测系统matlab仿真,带GUI操作界面

1.算法仿真效果
matlab2022a仿真结果如下:

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg
7.jpeg
8.jpeg

2.算法涉及理论知识概要
2.1、Faster-RCNN网络介绍

     Faster-RCNN是一种流行的深度学习目标检测算法,它通过使用Region Proposal Network (RPN) 来实现高效且准确的目标检测。相比于其它的目标检测算法,例如R-CNN和SPP-Net,Faster-RCNN具有更高的效率和准确性。

2.2、Faster-RCNN工作原理

Faster-RCNN由两个主要部分组成:RPN和RCNN。

    RPN:该网络通过滑动小窗口在图像上进行扫描,并预测窗口内可能存在目标的区域(称为“提议”)。它通过使用一种名为“高斯混合模型”的方法对窗口中的像素进行分类,以确定是否有可能存在目标。对于每个可能的区域,RPN都会生成一组坐标,这组坐标表示该区域在原始图像上的位置。
    RCNN:该网络接收RPN生成的提议,并使用卷积神经网络(CNN)对每个提议进行特征提取。然后,这些特征被送入一个全连接层,以生成每个提议的分类(即目标或背景)和边界框(即目标在图像中的位置)。

2.3 Faster-RCNN步骤

    对于每个滑动窗口,RPN使用高斯混合模型对窗口内的像素进行分类,以确定是否有可能存在目标。这通常涉及计算每个像素与高斯分布的匹配程度,并根据匹配程度对像素进行分类。
   RCNN接收RPN生成的提议,并使用卷积神经网络对其进行特征提取。这通常涉及一系列卷积层、ReLU激活函数和池化层,以从图像中提取有用的特征。
   这些特征被送入全连接层,以生成每个提议的分类和边界框。全连接层通常使用softmax函数对分类进行归一化处理,以生成每个提议属于目标或背景的概率。同时,全连接层也会输出边界框的坐标,以指示目标在图像中的位置。


   基于Faster-RCNN网络的人员迭代检测系统通过结合RPN和Fast R-CNN检测器,实现了高效和准确的人员检测。该系统可以应用于各种场景,如监控、人群计数和安全应用等。通过迭代检测,可以进一步提高检测精度,特别是在复杂和拥挤的环境中。

3.MATLAB核心程序
```% 随机打乱数据集并分割为训练集、验证集和测试集
Ridx = randperm(height(vehicleDataset));
idx = floor(0.85 * height(vehicleDataset));
train_Idx = 1:idx;
train_Tbl = vehicleDataset(Ridx(train_Idx),:);

test_Idx = idx+1 : idx + 1 + floor(0.1 * length(Ridx) );
test_Tbl = vehicleDataset(Ridx(test_Idx),:);

test_Idx0 = test_Idx(end)+1 : length(Ridx);
test_Tbl0 = vehicleDataset(Ridx(test_Idx0),:);
% 创建图像数据存储器
imdsTrain = imageDatastore(train_Tbl{:,'imageFilename'});
bldsTrain = boxLabelDatastore(train_Tbl(:,'man'));
imdsValidation = imageDatastore(test_Tbl{:,'imageFilename'});
bldsValidation = boxLabelDatastore(test_Tbl(:,'man'));
imdsTest = imageDatastore(test_Tbl0{:,'imageFilename'});
bldsTest = boxLabelDatastore(test_Tbl0(:,'man'));
% 创建训练、验证和测试数据
trainingData = combine(imdsTrain,bldsTrain);
validationData = combine(imdsValidation,bldsValidation);
testData = combine(imdsTest,bldsTest);

% 预处理训练数据
data = read(trainingData);
In_layer_Size = [224 224 3];

% 估计锚框
pre_train_data = transform(trainingData, @(data)preprocessData(data,In_layer_Size));
NAnchor = 3;
NBoxes = estimateAnchorBoxes(pre_train_data,NAnchor);
numClasses = width(vehicleDataset)-1;
% 创建Faster R-CNN网络
lgraph = fasterRCNNLayers(In_layer_Size,numClasses,NBoxes,Initial_nn,featureLayer);
% 数据增强
aug_train_data = transform(trainingData,@augmentData);
augmentedData = cell(4,1);

% 预处理数据并显示标注
trainingData = transform(aug_train_data,@(data)preprocessData(data,In_layer_Size));
validationData = transform(validationData,@(data)preprocessData(data,In_layer_Size));
data = read(trainingData);
I = data{1};
bbox = data{2};

% 设置训练参数
options = trainingOptions('sgdm',...
'MaxEpochs',240,...
'MiniBatchSize',2,...
'InitialLearnRate',3e-5,...
'CheckpointPath',tempdir,...
'ValidationData',validationData);
% 训练Faster R-CNN目标检测器
[detector, info] = trainFasterRCNNObjectDetector(trainingData,lgraph,options,'NegativeOverlapRange',[0 0.15],'PositiveOverlapRange',[0.15 1]);
save net015.mat detector info
```

相关文章
|
3月前
|
供应链 算法 新能源
高比例可再生能源电力系统的调峰成本量化与分摊模型(Matlab代码实现)
高比例可再生能源电力系统的调峰成本量化与分摊模型(Matlab代码实现)
103 4
|
3月前
|
数据采集 算法 安全
多接地配电系统的基于PMU的系统状态估计(Matlab代码实现)
多接地配电系统的基于PMU的系统状态估计(Matlab代码实现)
160 0
|
3月前
|
安全 调度
【火电机组、风能、储能】高比例风电电力系统储能运行及配置分析(Matlab代码实现)
【火电机组、风能、储能】高比例风电电力系统储能运行及配置分析(Matlab代码实现)
|
2月前
|
Ubuntu 网络协议 网络安全
解决Ubuntu系统的网络连接问题
以上步骤通常可以帮助解决大多数Ubuntu系统的网络连接问题。如果问题仍然存在,可能需要更深入的诊断,或考虑联系网络管理员或专业技术人员。
558 18
|
2月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的青少年网络使用情况分析及预测系统
本研究基于Python大数据技术,构建青少年网络行为分析系统,旨在破解现有防沉迷模式下用户画像模糊、预警滞后等难题。通过整合多平台亿级数据,运用机器学习实现精准行为预测与实时干预,推动数字治理向“数据驱动”转型,为家庭、学校及政府提供科学决策支持,助力青少年健康上网。
|
2月前
|
监控 安全 网络协议
Cisco Identity Services Engine (ISE) 3.5 发布 - 基于身份的网络访问控制和策略实施系统
Cisco Identity Services Engine (ISE) 3.5 发布 - 基于身份的网络访问控制和策略实施系统
366 1
Cisco Identity Services Engine (ISE) 3.5 发布 - 基于身份的网络访问控制和策略实施系统
|
3月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
235 2
|
3月前
|
监控
基于MATLAB/Simulink的单机带负荷仿真系统搭建
使用MATLAB/Simulink平台搭建一个单机带负荷的电力系统仿真模型。该系统包括同步发电机、励磁系统、调速系统、变压器、输电线路以及不同类型的负荷模型。
480 5
|
2月前
|
传感器 机器学习/深度学习 算法
【无人机协同】动态环境下多无人机系统的协同路径规划与防撞研究(Matlab代码实现)
【无人机协同】动态环境下多无人机系统的协同路径规划与防撞研究(Matlab代码实现)
188 0

热门文章

最新文章