Java并发基础:LinkedBlockingQueue全面解析!

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: LinkedBlockingQueue类是以链表结构实现高效线程安全队列,具有出色的并发性能、灵活的阻塞与非阻塞操作,以及适用于生产者和消费者模式的能力,此外,LinkedBlockingQueue还具有高度的可伸缩性,能够在多线程环境中有效管理数据共享,是提升程序并发性能和稳定性的关键组件。

Java并发基础:LinkedBlockingDeque全面解析! - 程序员古德

内容概要

LinkedBlockingQueue类是以链表结构实现高效线程安全队列,具有出色的并发性能、灵活的阻塞与非阻塞操作,以及适用于生产者和消费者模式的能力,此外,LinkedBlockingQueue还具有高度的可伸缩性,能够在多线程环境中有效管理数据共享,是提升程序并发性能和稳定性的关键组件。

核心概念

假如有一个在线购物平台,这个平台需要处理大量的订单,每当有用户下单,系统就需要将这个订单信息传递给后台的处理程序进行进一步的处理,比如库存管理、支付处理、物流分配等,但是,由于用户量巨大,订单量也非常大,如果直接让处理程序立即处理每一个订单,那么系统可能会因为处理不过来而崩溃。

这是,可以使用LinkedBlockingQueue来解决这问题,可以把LinkedBlockingQueue想象成一个排队等候区,每当有用户下单,订单信息就被放到这个排队等候区里面,后台的处理程序则可以从这个排队等候区里面取出订单进行处理,由于LinkedBlockingQueue是一个线程安全的队列,所以它可以保证在多线程环境下,订单信息不会被重复处理或丢失。

而且,LinkedBlockingQueue还有一个很有用的特性,就是它可以在插入元素时设置等待时间,因此,如果排队等候区已经满了(达到了最大容量),新的订单信息就需要等待直到有空间可以放入,通过设置等待时间,可以控制新订单信息需要等待多久,如果超过了这个时间还没有空间,那么就可以抛出一个异常或者进行其他的处理。

LinkedBlockingQueue主要用来解决多线程间的数据共享和传输问题,尤其是在生产者-消费者场景中。这是一个线程安全的阻塞队列,它实现了BlockingQueue接口,并基于链表数据结构。

LinkedBlockingQueue通常用来解决以下情况问题:

  1. 线程安全的数据共享:在多线程环境中,当多个线程需要访问和修改共享数据时,可能会出现数据不一致的问题,LinkedBlockingQueue通过内部的锁机制和其他同步措施,确保在并发情况下数据的完整性和一致性。
  2. 生产者-消费者问题:这是并发编程中的一个经典问题,其中生产者生成数据放入缓冲区,消费者从缓冲区取出数据,如果缓冲区已满,生产者需要等待;如果缓冲区为空,消费者需要等待,LinkedBlockingQueue提供了阻塞的put()take()方法,使得生产者和消费者可以在队列满或空时自动阻塞等待,从而简化了编程复杂度。
  3. 流量控制:在高并发系统中,如果后端处理速度跟不上前端生成数据的速度,可能会导致系统崩溃,通过使用LinkedBlockingQueue,可以设置一个有限的队列容量,当队列满时,生产者会被阻塞,从而实现了对流量的控制。
  4. 解耦LinkedBlockingQueue还可以用于解耦生产者和消费者之间的直接依赖关系,生产者只需要将数据放入队列,而不需要关心消费者何时或如何消费这些数据;同样,消费者只需要从队列中取出数据处理,而不需要关心数据是谁生产的或如何生产的。这种解耦有助于提高系统的可维护性和可扩展性。

代码案例

下面使用LinkedBlockingQueue类模拟了一个生产者-消费者场景,其中生产者生成整数并将它们放入队列,而消费者从队列中取出整数并处理它们,如下:

import java.util.concurrent.BlockingQueue;  
import java.util.concurrent.LinkedBlockingQueue;  

// 生产者类,用于生成数据并放入队列  
class Producer implements Runnable {
   
     
    private final BlockingQueue<Integer> queue;  

    public Producer(BlockingQueue<Integer> queue) {
   
     
        this.queue = queue;  
    }  

    @Override  
    public void run() {
   
     
        try {
   
     
            for (int i = 0; i < 10; i++) {
   
     
                Thread.sleep(200); // 模拟生产时间  
                int item = i;  
                System.out.println("生产者生产了: " + item);  
                queue.put(item); // 将生产的数据放入队列  
            }  
        } catch (InterruptedException e) {
   
     
            Thread.currentThread().interrupt();  
        }  
    }  
}  

// 消费者类,用于从队列中取出数据并处理  
class Consumer implements Runnable {
   
     
    private final BlockingQueue<Integer> queue;  

    public Consumer(BlockingQueue<Integer> queue) {
   
     
        this.queue = queue;  
    }  

    @Override  
    public void run() {
   
     
        try {
   
     
            while (true) {
   
     
                Integer item = queue.take(); // 从队列中取出数据,如果队列为空则阻塞  
                System.out.println("消费者消费了: " + item);  
                if (item == 9) {
   
    // 假设生产10个元素后结束消费  
                    break;  
                }  
            }  
        } catch (InterruptedException e) {
   
     
            Thread.currentThread().interrupt();  
        }  
    }  
}  

// 主类,用于演示生产者和消费者的使用  
public class LinkedBlockingQueueDemo {
   
     

    public static void main(String[] args) {
   
     
        BlockingQueue<Integer> queue = new LinkedBlockingQueue<>(10); // 创建一个容量为10的LinkedBlockingQueue  

        // 启动生产者线程  
        Thread producerThread = new Thread(new Producer(queue));  
        producerThread.start();  

        // 启动消费者线程  
        Thread consumerThread = new Thread(new Consumer(queue));  
        consumerThread.start();  

        // 等待两个线程执行完成(在实际应用中,可能需要使用更复杂的同步机制来等待线程结束)  
        try {
   
     
            producerThread.join();  
            consumerThread.join();  
        } catch (InterruptedException e) {
   
     
            e.printStackTrace();  
        }  

        System.out.println("程序执行完毕");  
    }  
}

在上面代码中,定义了一个生产者类Producer和一个消费者类Consumer,它们都实现了Runnable接口,因此可以作为线程运行,生产者在其run方法中循环生成整数,并通过queue.put(item)方法将它们放入队列中,消费者在其run方法中通过queue.take()方法从队列中取出整数并处理它们,如果队列为空,take()方法会阻塞,直到队列中有元素可用。

main方法中,创建了一个容量为10的LinkedBlockingQueue实例,并分别启动了一个生产者线程和一个消费者线程,程序会等待这两个线程执行完成后输出“程序执行完毕”。

核心API

LinkedBlockingQueue是实现了BlockingQueue接口,是一个基于链表的、线程安全的阻塞队列,以下是LinkedBlockingQueue类中一些主要方法的含义:

  1. 构造方法
    • LinkedBlockingQueue():创建一个具有默认容量(Integer.MAX_VALUE)的LinkedBlockingQueue
    • LinkedBlockingQueue(int capacity):创建一个具有指定容量的LinkedBlockingQueue
  2. 添加元素
    • add(E e):将指定的元素插入此队列中(如果立即可行且不会违反容量限制),成功时返回true,如果当前没有可用的空间,则抛出IllegalStateException
    • offer(E e):将指定的元素插入此队列中(如果立即可行且不会违反容量限制),成功时返回true,如果当前没有可用的空间,则返回false
    • put(E e) throws InterruptedException:将指定的元素插入此队列中,等待必要的空间可用;如果空间不可用,则等待直到空间可用或线程被中断。
    • offer(E e, long timeout, TimeUnit unit):将指定的元素插入此队列中,等待指定的时间以允许其他线程插入或移除元素,或者直到此线程被中断。
  3. 移除元素
    • remove():移除并返回此队列的头部,如果此队列为空,则抛出NoSuchElementException
    • poll():移除并返回此队列的头部,如果此队列为空,则返回null
    • take() throws InterruptedException:移除并返回此队列的头部,等待(如果必要)直到元素变得可用或线程被中断。
    • poll(long timeout, TimeUnit unit):移除并返回此队列的头部,等待指定的时间以允许其他线程插入元素,或者直到此线程被中断或超时。
  4. 检查元素
    • element():检索但不移除此队列的头部,如果此队列为空,则抛出NoSuchElementException
    • peek():检索但不移除此队列的头部,如果此队列为空,则返回null
  5. 其它有用的方法
    • size():返回队列中的元素数量。这个方法的精确度可能会受到并发修改的影响,因此它主要用于监控,而不是用于同步控制。
    • remainingCapacity():返回理想情况下(没有内存和资源约束)此队列可接受的额外元素数量。
    • clear():移除队列中的所有元素。
    • contains(Object o):检查队列中是否包含指定的元素。
    • drainTo(Collection<? super E> c)drainTo(Collection<? super E> c, int maxElements):将队列中的元素移除并添加到指定的集合中,直到队列为空或移除了指定数量的元素。
    • iterator():返回队列中元素的迭代器。注意,迭代器的remove()方法会删除队列中的元素,但是不会自动调整队列的容量。
    • toArray():返回包含队列中所有元素的数组。

核心总结

Java并发基础:LinkedBlockingDeque全面解析! - 程序员古德

LinkedBlockingQueue实现了BlockingQueue接口,以链表结构存储元素,保证了线程安全,其优点在于具有高效的并发性能和可伸缩性,适用于生产者和消费者模式,能够很好地处理多线程间的数据共享问题,它的缺点是在比如数据量非常大时,由于链表结构的内存开销,可能会占用较多内存,此外,虽然它提供了阻塞和非阻塞的操作,但在高并发场景下,线程间的竞争可能导致性能下降。

关注我,每天学习互联网编程技术 - 程序员古德

END!

往期回顾

Java并发基础:LinkedBlockingDeque全面解析!

Java并发基础:LinkedTransferQueue全面解析!

Java并发基础:LinkedBlockingQueue全面解析!

Java并发基础:Deque接口和Queue接口的区别?

Spring核心基础:全面总结Spring中提供的那些基础工具类!

相关文章
|
13天前
|
存储 Java 计算机视觉
Java二维数组的使用技巧与实例解析
本文详细介绍了Java中二维数组的使用方法
30 15
|
13天前
|
算法 搜索推荐 Java
【潜意识Java】深度解析黑马项目《苍穹外卖》与蓝桥杯算法的结合问题
本文探讨了如何将算法学习与实际项目相结合,以提升编程竞赛中的解题能力。通过《苍穹外卖》项目,介绍了订单配送路径规划(基于动态规划解决旅行商问题)和商品推荐系统(基于贪心算法)。这些实例不仅展示了算法在实际业务中的应用,还帮助读者更好地准备蓝桥杯等编程竞赛。结合具体代码实现和解析,文章详细说明了如何运用算法优化项目功能,提高解决问题的能力。
48 6
|
8天前
|
小程序 前端开发 关系型数据库
uniapp跨平台框架,陪玩系统并发性能测试,小程序源码搭建开发解析
多功能一体游戏陪练、语音陪玩系统的开发涉及前期准备、技术选型、系统设计与开发及测试优化。首先,通过目标用户分析和竞品分析明确功能需求,如注册登录、预约匹配、实时语音等。技术选型上,前端采用Uni-app支持多端开发,后端选用PHP框架确保稳定性能,数据库使用MySQL保证数据一致性。系统设计阶段注重UI/UX设计和前后端开发,集成WebSocket实现语音聊天。最后,通过功能、性能和用户体验测试,确保系统的稳定性和用户满意度。
|
13天前
|
存储 算法 搜索推荐
【潜意识Java】期末考试可能考的高质量大题及答案解析
Java 期末考试大题整理:设计一个学生信息管理系统,涵盖面向对象编程、集合类、文件操作、异常处理和多线程等知识点。系统功能包括添加、查询、删除、显示所有学生信息、按成绩排序及文件存储。通过本题,考生可以巩固 Java 基础知识并掌握综合应用技能。代码解析详细,适合复习备考。
16 4
|
13天前
|
Java 编译器 程序员
【潜意识Java】期末考试可能考的简答题及答案解析
为了帮助同学们更好地准备 Java 期末考试,本文列举了一些常见的简答题,并附上详细的答案解析。内容包括类与对象的区别、多态的实现、异常处理、接口与抽象类的区别以及垃圾回收机制。通过这些题目,同学们可以深入理解 Java 的核心概念,从而在考试中更加得心应手。每道题都配有代码示例和详细解释,帮助大家巩固知识点。希望这些内容能助力大家顺利通过考试!
15 0
|
安全 Java Linux
Java LinkedBlockingQueue 实现
本文着重介绍 Java 并发容器中 LinkedBlockingQueue 的实现方式。
|
27天前
|
监控 Java
java异步判断线程池所有任务是否执行完
通过上述步骤,您可以在Java中实现异步判断线程池所有任务是否执行完毕。这种方法使用了 `CompletionService`来监控任务的完成情况,并通过一个独立线程异步检查所有任务的执行状态。这种设计不仅简洁高效,还能确保在大量任务处理时程序的稳定性和可维护性。希望本文能为您的开发工作提供实用的指导和帮助。
85 17
|
2月前
|
Java
Java—多线程实现生产消费者
本文介绍了多线程实现生产消费者模式的三个版本。Version1包含四个类:`Producer`(生产者)、`Consumer`(消费者)、`Resource`(公共资源)和`TestMain`(测试类)。通过`synchronized`和`wait/notify`机制控制线程同步,但存在多个生产者或消费者时可能出现多次生产和消费的问题。 Version2将`if`改为`while`,解决了多次生产和消费的问题,但仍可能因`notify()`随机唤醒线程而导致死锁。因此,引入了`notifyAll()`来唤醒所有等待线程,但这会带来性能问题。
Java—多线程实现生产消费者
|
23天前
|
缓存 安全 算法
Java 多线程 面试题
Java 多线程 相关基础面试题
|
2月前
|
安全 Java Kotlin
Java多线程——synchronized、volatile 保障可见性
Java多线程中,`synchronized` 和 `volatile` 关键字用于保障可见性。`synchronized` 保证原子性、可见性和有序性,通过锁机制确保线程安全;`volatile` 仅保证可见性和有序性,不保证原子性。代码示例展示了如何使用 `synchronized` 和 `volatile` 解决主线程无法感知子线程修改共享变量的问题。总结:`volatile` 确保不同线程对共享变量操作的可见性,使一个线程修改后,其他线程能立即看到最新值。

推荐镜像

更多