YOLOv8改进 | 主干篇 | 反向残差块网络EMO一种轻量级的CNN架构(附完整代码 + 修改教程)

简介: YOLOv8改进 | 主干篇 | 反向残差块网络EMO一种轻量级的CNN架构(附完整代码 + 修改教程)

一、本文介绍

本文给大家带来的改进机制是反向残差块网络EMO,其的构成块iRMB在之前我已经发过了,同时进行了二次创新,本文的网络就是由iRMB组成的网络EMO,所以我们二次创新之后的iEMA也可以用于这个网络中,再次形成二次创新,同时本文的主干网络为一种轻量级的CNN架构,在开始之前给大家推荐一下我的专栏,本专栏每周更新3-10篇最新前沿机制 | 包括二次创新全网无重复,以及融合改进,更有包含我所有的YOLOv8仓库集成文件(文件内集成我所有的改进机制全部注册完毕可以直接运行)和交流群和视频讲解提供给大家。

欢迎大家订阅我的专栏一起学习YOLO!

image.png

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制
专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

二、EMO模型原理

image.png


Efficient MOdel (EMO)模型基于反向残差块(Inverted Residual Block, IRB),这是一种轻量级CNN的基础架构,同时融合了Transformer的有效组件。通过这种结合,EMO实现了一个统一的视角来处理轻量级模型的设计,创新地将CNN和注意力机制相结合。此外,EMO模型在各种基准测试中展示出优越的性能,特别是在ImageNet-1K、COCO2017和ADE20K等数据集上的表现。该模型不仅在效率和精度方面取得了平衡,而且在轻量级设计方面实现了突破。

EMO的基本原理可以分为以下几个要点:

1. 反向残差块(IRB)的应用:IRB作为轻量级CNN的基础架构,EMO将其扩展到基于注意力的模型。

2. 元移动块(MMB)的抽象化:EMO提出了一种新的轻量级设计方法,即单残差的元移动块(MMB),这是从IRB和Transformer的有效组件中抽象出的。

3. 现代反向残差移动块(iRMB)的构建:基于简单但有效的设计标准,EMO推导出了iRMB,并以此构建了类似于ResNet的高效模型(EMO)。

在下面这个图中,我们可以看到EMO模型的结构细节:

image.png


左侧是一个抽象统一的元移动块(Meta-Mobile Block),它融合了多头自注意力机制(Multi-Head Self-Attention)、前馈网络(Feed-Forward Network)和反向残差块(Inverted Residual Block)。这个复合模块通过不同的扩展比率和高效的操作符进行具体化。

右侧展示了一个类似于ResNet的EMO模型架构,它完全由推导出的iRMB组成。图中突出了EMO模型中微操作组合(如深度可分卷积、窗口Transformer等)和不同尺度的网络层次,这些都是用于分类(CLS)、检测(Det)和分割(Seg)任务的。这种设计强调了EMO模型在处理不同下游任务时的灵活性和效率。

目录
相关文章
|
17天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
21天前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
|
2月前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
2月前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
109 1
|
18天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
32 0
|
2月前
|
弹性计算 Kubernetes 网络协议
阿里云弹性网络接口技术的容器网络基础教程
阿里云弹性网络接口技术的容器网络基础教程
阿里云弹性网络接口技术的容器网络基础教程
|
2月前
|
机器学习/深度学习 SQL 数据采集
基于tensorflow、CNN网络识别花卉的种类(图像识别)
基于tensorflow、CNN网络识别花卉的种类(图像识别)
33 1
|
22天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。
|
2月前
|
算法 计算机视觉 Python
YOLOv8优改系列二:YOLOv8融合ATSS标签分配策略,实现网络快速涨点
本文介绍了如何将ATSS标签分配策略融合到YOLOv8中,以提升目标检测网络的性能。通过修改损失文件、创建ATSS模块文件和调整训练代码,实现了网络的快速涨点。ATSS通过自动选择正负样本,避免了人工设定阈值,提高了模型效率。文章还提供了遇到问题的解决方案,如模块载入和环境配置问题。
88 0
YOLOv8优改系列二:YOLOv8融合ATSS标签分配策略,实现网络快速涨点