低功耗休眠唤醒之三级环形架构

简介: 无线通信技术相关应用中,用户体验一直是用户关系的重点。无线通讯距离近一点,通讯速度慢一点,这都不是致命的问题,在某些场合下是完全可以接受的,甚至本身就是项目的技术需求;但是有一些设计缺陷却会严重影响用户体验的,一旦大面积的出现,基本上可以判定为产品失败

前言


     无线通信技术相关应用中,用户体验一直是用户关系的重点。无线通讯距离近一点,通讯速度慢一点,这都不是致命的问题,在某些场合下是完全可以接受的,甚至本身就是项目的技术需求;但是有一些设计缺陷却会严重影响用户体验的,一旦大面积的出现,基本上可以判定为产品失败了;总结起来,大家都无法忍受的问题主要是下述两个


1)通讯失败或者数据传输错误


2)电池消耗快,很快没电


 

01

业内问题

 

     在绝大部分用户的心目中,无线通讯本身就不如有线通讯技术稳定,如果一款产品还经常传输失败,试问用户会对这款产品有信心吗?

 

     无线产品配合上电池供电,才能充分发挥无线技术可以随意移动的优势,因此很多的无线产品经常和低功耗或电池供电有非常紧密的联系;一旦这个产品电池消耗很快,那么必然将是其便携性,移动性大打折扣。

 

     当然,在理论设计上产品的电池寿命肯定是非常长的,但是真正实现起来却比较困难,很多的产品设计电池寿命有 5 年之久,但是现场运行不到一年,甚至几个月就完全没电了,这种问题的发作经常没有任何规律,测试时间上又以年/月为单位,且呈现出偶发特性,定位起来极其困难,困扰了不少的无线通讯技术工程师,被认为是业界的重要难题之一。

 


02

技术难点

 

     其实电池快速耗电和通讯不稳定说到底都是软件设计,特别是软件架构方面的设计问题;软件架构上的不完整或混乱,导致射频芯片的控制不准确甚至部分状态失去控制才是问题的源头。既然大家都认为功耗的管理是一个难题,那么到底难在哪些环节呢?

 

   (1产品的低功耗休眠唤醒设计,存在系统业务和应用层业务两种:在系统层面讲,主要有OTA无线升级、远程诊断、远程控制(无线I/O)等;在应用层中则是回调机制、关闭端口上拉、检测用户按键、关闭工作指示灯等。系统层内容属于整个产品的躯干和骨架,通常需要交给经验丰富的工程师负责,因为涉及精密的规则和庞大的算法问题,需要较为强大的抽象能力和全面的视角。而应用层则是面向用户的,体现在软件部分则相对比较简单。

 

   (2系统存在多种唤醒源:UARTGPIORTCTimer等,这些唤醒源中断方式和清除规则略有不同,但是进入和退出休眠需要遵循相同的路径,因此其控制逻辑需要做一定的抽象化设计,具有一定的挑战。

 

   (3基于RTC定时器的后台背景活动:某些延迟操作,比如开启一个 LED 指示灯,十秒之后关闭,此时如果处理器全速运行就为了运行这一功能,是不太经济的;通常是设置一个状态标志,然后启动RTC定时器,并将处理器切入休眠状态,计时的时间到了之后会产生一个RTC中断,处理器可以在这种中断到达的时候关闭这个LED 指示灯。类似这些延迟操作,往往还会和其他的业务状态交织在一起,控制逻辑需要精确设计,稍有不慎就会失去控制

 

   (4被未知的电磁波干扰,吵醒误唤醒等假唤醒行为:无线电波由于空间开放的特性,其唤醒动作往往伴随着少量的模拟特性,偶尔会被一些未知的信号给误触发,处理器被唤醒之后,需要对唤醒后的实时参数做一些分析计算,对唤醒源进行甄别筛选,如果不是有效的唤醒,需要提前终止业务逻辑。

 

   (5存在多种不同模式的睡眠深度的低功耗模式:处理器通常支持多种不同的睡眠深度对应不同的功耗等级。不同睡眠模式下,处理器可以激活的外设不一样的,在唤醒之后,有些外设需要再次初始化之后才可以重新投入工作,只有深入了解处理器的工作特性,才能控制好处理器不同睡眠模式切换工作。

 

   (6双芯片模式(独立的无线通讯模块)模式和单芯片模式(协议栈和应用层业务运行在一个芯片上),需要统一的编程接口如果维持两套不同的编程接口,代码分支庞大不说,还很容易产生歧义,为后续的产品维护和架构升级带来困难。

综合以上难点,需要解决如此复杂的功耗控制要求,必须分而治之,采用分层的控制策略;行之有效的解决方案就是如下的内--外,三级环形架构。

 

 

03

WiMi-net的三级环形架构


image.png

 

     上图是一个电子价签的主程序框架。可以看出该程序主要分为三个主线程,分别是协议栈的主线程;低功耗休眠与唤醒的主线程与墨水屏应用业务的主线程。这三个主线程在同一个层级平行运行,具有相同的调度优先级。

 


局放图


image.png


     我们将低功耗休眠与唤醒的主线程做局部放大,如上所示。


     图中的三级环架构是休眠唤醒管理模块的核心,是整个休眠唤醒功能的局部放大。如图所示,由内环、中环、外环,三部分构成。因为考虑到在无线通信中,各种事件的复杂程度及其处理方式,分为以上三环。最内部一环主管电磁波唤醒,中层环主管GPIO唤醒、RTC唤醒、UART唤醒,最外层环则启动了整个协议栈以及业务层,面向用户进行交互。

 

     三级环的目的突出的是分层做事原则。在内环中只进行电磁波唤醒的工作,这里主要有三部分,查询中断、分析中断状态、无线电波处理。当信号到达这一环,会根据信号类型分析是否进行无线电波的唤醒处理。

 

     如果不是无线电波唤醒,则跳出该层,进入中环处理。这里的信号类型分析和处理是根据不同事件、不同时刻产生的耦合性而定的。

 

     在中环,GPIO 唤醒是特定产品的唤醒模式;RTC 唤醒通常用于一些低优先级的后台任务,比如检测是否漏电或者执行一些延迟 I/O 操作;UART 串口唤醒则是针对用户处理器。

 

     外环则是面向用户的层级,如需要启动主程序固件升级或者业务逻辑,比如墨水屏的刷新屏幕显示内容等,则程序会被全面唤醒,此时就在外环中进行。

 

 

环形架构的优势

 

     由外环、中环到内环,视觉效果方面是越来越小的,越来越缩放的。自然在功能性方面也是越来越小,越来越简洁的过程。三级环从外到内,能做的就越来越少,体现在软件代码方面就是,代码更少,功能性更加单一,逻辑更加清晰,运行更稳定。从而更加节省功耗。

 

     为什么功耗更加节约?将电磁波唤醒独立拆分,做成了独立的单元结构,是出于这样的考虑的。当信号指令到达三级环,内环首先进行判定,是否需要电磁波唤醒,判定是,就进行电磁波唤醒;判定不是,则跳入中环选择唤醒类别,内环进入休眠。

 

     考虑到事件的复杂性、多样性,需要从不同属性、不同时间等多角度考量休眠唤醒的执行,通俗点说就是跟我相关起来干活,跟我无关继续睡觉,这样的三级环设计针对性很强,在需要单一模式唤醒时,只需要调动少数软件资源和内部耗能就可以完成,完成相关作业后继续休眠,等待下一轮指令唤醒。从而这样的三级环设计是一款更加节约功耗的方案。

 

 

回调函数


// *****************************************************************************
// Design Notes:  
// -----------------------------------------------------------------------------
char OnHostWakeup_Request( unsigned char iStatus, char iCause, char iReqAck )
{      
  unsigned char iRetVal;
 
  // The callback status
  switch ( iStatus )
  {
  case
WIMINET_SLEEP_CALL_INIT:
     {
        OnWakeupRequest_Init( iCause, iReqAck );
     }
     
break;
     
 
case WIMINET_SLEEP_CALL_OPEN:
     {
        OnWakeupRequest_Open( iCause, iReqAck );
     }
     
break;

 
case WIMINET_SLEEP_CALL_WORK:
     {
        OnWakeupRequest_Work( iCause, iReqAck );
     }
     
break;

 
case WIMINET_SLEEP_CALL_STOP:
     {
        OnWakeupRequest_Stop( iCause, iReqAck );        
     }
     
break;

  default:
     {
        iRetVal = 0X00;
     }
     
break;      
  }
 
  // The return status
  return iRetVal;
}

 


     上图是一个 SoC 产品方案,回调函数的标准样本,通常需要实现系统刚刚唤醒已经完成初始化执行用户任务即将进入休眠等几个重要的通知时刻:

 

     系统刚刚唤醒系统运行在三级环的内环,处理器刚刚被中断唤醒,需要启用系统层级别的外设,比如 SPI 总线等;

 

     已经完成初始化:系统已经切换至三级环的外环,控制权准备释放给用户程序,通常在此时初始化用户任务;

 

      执行用户任务系统运行在三级环的外环,此时协议栈程序也在同层级平行运作,用户程序执行完了之后,需要释放控制权给系统,通知系统进入睡眠模式

 

     即将进入休眠:系统运行在三级环的中环,所有的数据都已经发送完毕或者超时终止,即将重新进入睡眠模式,通知用户关闭外设,执行任务的清理或者重置工作。

 

     对于不太复杂的系统,通常仅仅需要实现上述四个通知的回调函数即可,其余的通知可以不做处理器;对于更加复杂的系统,可以根据需要实现其他更多的回调通知。

相关文章
|
缓存 测试技术 数据中心
【计算机架构】计算 CPU 动态功耗 | 集成电路成本 | SPEC 基准测试 | Amdahl 定律 | MIPS 性能指标
【计算机架构】计算 CPU 动态功耗 | 集成电路成本 | SPEC 基准测试 | Amdahl 定律 | MIPS 性能指标
490 0
|
存储 并行计算 编译器
【计算机架构】程序指令计数 | 功耗计算 | 电力功耗 | 安德尔定律(Amdahl‘s Law)
【计算机架构】程序指令计数 | 功耗计算 | 电力功耗 | 安德尔定律(Amdahl‘s Law)
145 1
|
存储 前端开发 Linux
(上)【数字IC精品文章收录】近500篇文章|学习路线|基础知识|接口|总线|脚本语言|芯片求职|安全|EDA|工具|低功耗设计|Verilog|低功耗|STA|设计|验证|FPGA|架构|AMBA|书籍|
【数字IC精品文章收录】近500篇文章|学习路线|基础知识|接口|总线|脚本语言|芯片求职|安全|EDA|工具|低功耗设计|Verilog|低功耗|STA|设计|验证|FPGA|架构|AMBA|书籍|
(上)【数字IC精品文章收录】近500篇文章|学习路线|基础知识|接口|总线|脚本语言|芯片求职|安全|EDA|工具|低功耗设计|Verilog|低功耗|STA|设计|验证|FPGA|架构|AMBA|书籍|
|
人工智能 算法 安全
(下)【数字IC精品文章收录】近500篇文章|学习路线|基础知识|接口|总线|脚本语言|芯片求职|安全|EDA|工具|低功耗设计|Verilog|低功耗|STA|设计|验证|FPGA|架构|AMBA|书籍|
【数字IC精品文章收录】近500篇文章|学习路线|基础知识|接口|总线|脚本语言|芯片求职|安全|EDA|工具|低功耗设计|Verilog|低功耗|STA|设计|验证|FPGA|架构|AMBA|书籍|
(下)【数字IC精品文章收录】近500篇文章|学习路线|基础知识|接口|总线|脚本语言|芯片求职|安全|EDA|工具|低功耗设计|Verilog|低功耗|STA|设计|验证|FPGA|架构|AMBA|书籍|
|
1月前
|
弹性计算 API 持续交付
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。
|
2月前
|
Cloud Native Devops 云计算
云计算的未来:云原生架构与微服务的革命####
【10月更文挑战第21天】 随着企业数字化转型的加速,云原生技术正迅速成为IT行业的新宠。本文深入探讨了云原生架构的核心理念、关键技术如容器化和微服务的优势,以及如何通过这些技术实现高效、灵活且可扩展的现代应用开发。我们将揭示云原生如何重塑软件开发流程,提升业务敏捷性,并探索其对企业IT架构的深远影响。 ####
64 3
|
2月前
|
Cloud Native 安全 数据安全/隐私保护
云原生架构下的微服务治理与挑战####
随着云计算技术的飞速发展,云原生架构以其高效、灵活、可扩展的特性成为现代企业IT架构的首选。本文聚焦于云原生环境下的微服务治理问题,探讨其在促进业务敏捷性的同时所面临的挑战及应对策略。通过分析微服务拆分、服务间通信、故障隔离与恢复等关键环节,本文旨在为读者提供一个关于如何在云原生环境中有效实施微服务治理的全面视角,助力企业在数字化转型的道路上稳健前行。 ####
|
1月前
|
Java 开发者 微服务
从单体到微服务:如何借助 Spring Cloud 实现架构转型
**Spring Cloud** 是一套基于 Spring 框架的**微服务架构解决方案**,它提供了一系列的工具和组件,帮助开发者快速构建分布式系统,尤其是微服务架构。
212 69
从单体到微服务:如何借助 Spring Cloud 实现架构转型