Mysql 存储大数据量问题

简介: Mysql 存储大数据量问题

今日格言:了解了为什么,问题就解决了一半。

Mysql 单表适合的最大数据量是多少?

我们说 Mysql 单表适合存储的最大数据量,自然不是说能够存储的最大数据量,如果是说能够存储的最大量,那么,如果你使用自增 ID,最大就可以存储 2^32 或 2^64 条记录了,这是按自增 ID 的数据类型 int 或 bigint 来计算的;如果你不使用自增 id,且没有 id 最大值的限制,如使用足够长度的随机字符串,那么能够限制单表最大数据量的就只剩磁盘空间了。显然我们不是在讨论这个问题。

影响 Mysql 单表的最优最大数量的一个重要因素其实是索引。

我们知道 Mysql 的主要存储引擎 InnoDB 采用 B+树结构索引。(至于为什么 Mysql 选择 b+树而不是其他数据结构来组织索引,不是本文讨论的话题,之后的文章会讲到。)那么 B+树索引是如何影响 Mysql 单表数据量的呢?

B+树

一棵 B+树如下所示:

B+树

Mysql 的 B+树索引存储在磁盘上,Mysql 每次读取磁盘 Page 的大小是 16KB,为了保证每次查询的效率,需要保证每次查询访问磁盘的次数,一般设计为 2-3 次磁盘访问,再多性能将严重不足。Mysql B+树索引的每个节点需要存储一个指针(8Byte)和一个键值(8Byte)。因此计算16KB/(8B+8B)=1K 16KB 可以存储 1K 个节点,3 次磁盘访问(即 B+树 3 的深度)可以存储 1K _ 1K _ 1K 即 10 亿数据。

如果查询依赖非主键索引,那么还涉及「二级索引」。这样数据量将更小。

拆分

分而治之——没有什么问题不能通过拆分一次来解决,不行就拆多次。

Mysql 单表存储的数据量有限。一个解决大数据量存储的办法就是分库分表。说白了就是一个数据库一张表放不下那么多数据,那就分多个数据库多张表存储。

拆分可分为「垂直拆分」「水平拆分」

「垂直拆分」是按照不同的表(或者 Schema)来切分到不同的数据库(主机)之上,「水平拆分」则是根据表中的数据的逻辑关系,将同一个表中的数据按照某种条件拆分到多台数据库(主机)上面或多张相同 Schema 的不同表中。

「垂直拆分」的最大特点就是规则简单,实施也更为方便,尤其适合各业务之间的耦合度非常低,相互影响很小,业务逻辑非常清晰的系统。在这种系统中,可以很容易做到将不同业务模块所使用的表分拆到不同的数据库中。根据不同的表来进行拆分,对应用程序的影响也更小,拆分规则也会比较简单清晰。

「水平拆分」「垂直切分」相比,相对来说稍微复杂一些。因为要将同一个表中的不同数据拆分到不同的数据库中,对于应用程序来说,拆分规则本身就较根据表名来拆分更为复杂,后期的数据维护也会更为复杂一些。

「垂直拆分」最直接的就是按领域拆分服务,隔离领域数据库。如此每个库所承担的数据压力就减少了。

「水平拆分」就是将同一个 Schema 的数据拆分到不同的库或不同的表中,这样每个表的数据量也将减小,查询效率将更高效。「水平拆分」就涉及到表的分片规则问题。

「几种典型的分片规则包括:」

 按照用户 ID 求模,将数据分散到不同的数据库,具有相同数据用户的数据都被分散到一个库中。 按照日期,将不同月甚至日的数据分散到不同的库中。 按照某个特定的字段求摸,或者根据特定范围段分散到不同的库中。

实现

门面模式——没有什么问题不能通过添加一个中间层来解决。

「垂直拆分」的一个方案就是在应用层使用多个数据源,按业务访问不同的数据源。另外更好方案其实就是微服务化。按不同的业务领域来拆分微服务,明确领域边界,隔离领域数据库。这样将对数据的存取内聚到独立的服务之中,对外提供统一的接口。在需要同时依赖多个服务时,我们可以通过添加「门面应用」来组合底层服务的数据,以提供更符合上层业务需求的接口,这些服务往往更接近真实的业务。而底层的服务则是更加内聚的资源服务。

代理模式——没有什么问题不能通过添加一个中间层来解决。

对于「水平拆分」应该尽量屏蔽拆分带来的数据访问困恼,为了让上层业务无需关心下层数据组织方式。「水平拆分」往往通过添加一个代理层来做这些事情,代理层对上提供虚拟表,这些虚拟表就像我们在单库上设计的单表一样;代理层对下解析和拆分执行 sql,然后按相应规则在不同的库和表执行相应的 sql 请求,再合并数据,并将合并后的结果返回给上层调用者。

「一般代理方式分为如下两种:」

  • 进程内代理
    进程内代理即将代理层嵌入到业务服务内部,拦截 sql 请求并做相应的处理。这样的好处是简单,但是侵入性大,且不够灵活。
    进程内代理
  • 进程外代理
    进程外代理即将代理独立成服务,代理真实业务服务和数据库之间的请求。这样是比较复杂的,需要高可用的代理服务架构。但是这样对业务的侵入性低,且易于升级扩展。
    进程外代理

问题

分布式事务问题

什么是分布式事务?本地事务的定义就是一系列相关的数据库操作完成后要满足 ACID 四大特性,而分布式事务就是将同一进程的操作放到不同的微服务进程中,即不同微服务应用进程的数据库操作满足事务要求,或者对不同数据库的一系列操作需满足事务要求。

这里就有两个问题需要解决。一个是因为应用的分布式造成的,一个是因为数据库本身的分布式造成的。数据库本身的分布式事务问题一般由数据库自身解决,大多数分布式数据库都可以做到一定的数据一致性保证,如 HBase 保证的强一致性,Cassandra 保证的最终一致性。

应用数据的一致性事务方案我们也可以参考分布式数据库的实现原理来实现。业界也有很多分布式事务的解决思路,如:

  • XA 方案
  • TCC 方案
  • 本地消息表
  • 可靠消息最终一致性方案
  • 最大努力通知方案

多表 Join 问题

通过分析 Join sql,将 sql 拆分成独立的查询请求,然后分别执行,并将结果合并计算返回给调用者。这个地方会涉及到很多执行优化的问题。

数据统计问题

当数据被分片到不同的数据库或不同的表中时,要对数据做一些全局的或涉及大量数据的统计时便会遇到一些问题。如求 Max,Min,Sum 等聚合问题。如果统计的数据有一定的业务规则,如只会按用户维度去统计,如统计某个用户的订单量,那么对订单表的分片,其实可以采用按用户 id 来分片,如此就可以解决这类统计问题。但是这种方案不通用。很多分片代理服务都需要将 sql 分片到不同的节点上去执行,然后再合并结果返回。

ID 问题

使用「分库分表」之后,就无法使用 Mysql 的表自增作为 id,因为不同库和表的自增将出现冲突的 id。解决这个问题就需要引入分布式 id 生成技术(将在以后的文章中讲到)。


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
5月前
|
存储 JSON 分布式计算
数据湖,不“唬”你:这是大数据存储的新秩序!
数据湖,不“唬”你:这是大数据存储的新秩序!
122 2
|
5月前
|
存储 分布式计算 大数据
【赵渝强老师】阿里云大数据存储计算服务:MaxCompute
阿里云MaxCompute是快速、全托管的TB/PB级数据仓库解决方案,提供海量数据存储与计算服务。支持多种计算模型,适用于大规模离线数据分析,具备高安全性、低成本、易用性强等特点,助力企业高效处理大数据。
277 0
|
8月前
|
存储 关系型数据库 MySQL
大数据新视界--大数据大厂之MySQL 数据库课程设计:开启数据宇宙的传奇之旅
本文全面剖析数据库课程设计 MySQL,展现其奇幻魅力与严峻挑战。通过实际案例凸显数据库设计重要性,详述数据安全要点及学习目标。深入阐述备份与恢复方法,并分享优秀实践项目案例。为开发者提供 MySQL 数据库课程设计的全面指南,助力提升数据库设计与管理能力,保障数据安全稳定。
大数据新视界--大数据大厂之MySQL 数据库课程设计:开启数据宇宙的传奇之旅
|
7月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
7月前
|
存储 关系型数据库 MySQL
大数据新视界 --面向数据分析师的大数据大厂之 MySQL 基础秘籍:轻松创建数据库与表,踏入大数据殿堂
本文详细介绍了在 MySQL 中创建数据库和表的方法。包括安装 MySQL、用命令行和图形化工具创建数据库、选择数据库、创建表(含数据类型介绍与选择建议、案例分析、最佳实践与注意事项)以及查看数据库和表的内容。文章专业、严谨且具可操作性,对数据管理有实际帮助。
大数据新视界 --面向数据分析师的大数据大厂之 MySQL 基础秘籍:轻松创建数据库与表,踏入大数据殿堂
|
8月前
|
关系型数据库 MySQL 数据安全/隐私保护
大数据新视界--大数据大厂之MySQL 数据库课程设计:数据安全深度剖析与未来展望
本文深入探讨数据库课程设计 MySQL 的数据安全。以医疗、电商、企业案例,详述用户管理、数据加密、备份恢复及网络安全等措施,结合数据安全技术发展趋势,与《大数据新视界 -- 大数据大厂之 MySQL 数据库课程设计》紧密关联,为 MySQL 数据安全提供全面指南。
大数据新视界--大数据大厂之MySQL 数据库课程设计:数据安全深度剖析与未来展望
|
7月前
|
存储 关系型数据库 MySQL
【免费动手教程上线】阿里云RDS MySQL推出大容量高性能存储:高性能本地盘(最高16TB存储空间)、高性能云盘(最高64TB存储空间)
阿里云RDS MySQL提供高性能本地盘与高性能云盘等存储方案,满足用户大容量、低延迟需求。高性能本地盘单盘最大16TB,IO延时微秒级;高性能云盘兼容ESSD特性,支持IO性能突发、BPE及16K原子写等能力。此外,阿里云还提供免费动手体验教程,帮助用户直观感受云数据库 RDS 存储性能表现。
|
8月前
|
负载均衡 算法 关系型数据库
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL集群架构负载均衡故障排除与解决方案
本文深入探讨 MySQL 集群架构负载均衡的常见故障及排除方法。涵盖请求分配不均、节点无法响应、负载均衡器故障等现象,介绍多种负载均衡算法及故障排除步骤,包括检查负载均衡器状态、调整算法、诊断修复节点故障等。还阐述了预防措施与确保系统稳定性的方法,如定期监控维护、备份恢复策略、团队协作与知识管理等。为确保 MySQL 数据库系统高可用性提供全面指导。
|
8月前
|
存储 分布式计算 大数据
数据湖——大数据存储的新思维,如何打破传统束缚?
数据湖——大数据存储的新思维,如何打破传统束缚?
347 16

推荐镜像

更多