【各种**问题系列】OLTP和OLAP是啥?

本文涉及的产品
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 【1月更文挑战第26天】【各种**问题系列】OLTP和OLAP是啥?

 image.gif编辑

OLTP和OLAP是什么?

OLTP联机事务处理:

       OLTP,也叫联机事务处理(Online Transaction Processing),表示事务性非常高的系统,一般都是高可用的在线系统,以小的事务以及小的查询为主,评估其系统的时候,一般看其每秒执行的Transaction以及Execute SQL的数量。在这样的系统中,单个数据库每秒处理的Transaction往往超过几百个,或者是几千个,Select 语句的执行量每秒几千甚至几万个。典型的OLTP系统有电子商务系统、银行、证券等,如美国eBay的业务数据库,就是很典型的OLTP数据库。业务场景如银行转账等实时场景。

OLAP联机分析处理:

       OLAP,叫联机分析处理(On-Line Analytical Processing),是数据仓库系统(HBase、ClickHouse…)的主要应用,支持对海量数据进行复杂的统计分析操作,持久化数据一般不进行修改,数据一致性要求不高,侧重决策支持,并且提供直观易懂的查询结果,例如商城推荐系统,用户人物画像。有的时候也叫DSS决策支持系统,就是我们说的数据仓库。在这样的系统中,语句的执行量不是考核标准,因为一条语句的执行时间可能会非常长,读取的数据也非常多。所以,在这样的系统中,考核的标准往往是磁盘子系统的吞吐量(带宽),如能达到多少MB/s的流量。业务场景如商品推荐,比如电商场景下常见的,根据用户行为做商品推荐。用户的行为数据存进数仓后,进行实时计算,然后将算法模型计算出的推荐结果发给业务端做展示。


OLTP和OLAP对比分析:

image.gif编辑

OLTP,联机事务处理(Online Transaction Processing)

       表示事务性非常高的系统,一般都是高可用的在线系统,以小的事务以及小的查询为主,评估其系统的时候,一般看其每秒执行的Transaction以及Execute SQL的数量。在这样的系统中,单个数据库每秒处理的Transaction往往超过几百个,或者是几千个,Select 语句的执行量每秒几千甚至几万个。典型的OLTP系统有电子商务系统、银行、证券等,如美国eBay的业务数据库,就是很典型的OLTP数据库。OLTP系统最容易出现瓶颈的地方就是CPU与磁盘子系统。

    • CPU出现瓶颈常表现在逻辑读总量与计算性函数或者是过程上,逻辑读总量等于单个语句的逻辑读乘以执行次数,如果单个语句执行速度虽然很快,但是执行次数非常多,那么,也可能会导致很大的逻辑读总量。设计的方法与优化的方法就是减少单个语句的逻辑读,或者是减少它们的执行次数。另外,一些计算型的函数,如自定义函数、decode等的频繁使用,也会消耗大量的CPU时间,造成系统的负载升高,正确的设计方法或者是优化方法,需要尽量避免计算过程,如保存计算结果到统计表就是一个好的方法。
    • 磁盘子系统在OLTP环境中,它的承载能力一般取决于它的IOPS处理能力. 因为在OLTP环境中,磁盘物理读一般都是db file sequential read,也就是单块读,但是这个读的次数非常频繁。如果频繁到磁盘子系统都不能承载其IOPS的时候,就会出现大的性能问题。

       OLTP比较常用的设计与优化方式为Cache技术与B-tree索引技术,Cache决定了很多语句不需要从磁盘子系统获得数据,所以,Web cache与Oracle data buffer对OLTP系统是很重要的。另外,在索引使用方面,语句越简单越好,这样执行计划也稳定,而且一定要使用绑定变量,减少语句解析,尽量减少表关联,尽量减少分布式事务,基本不使用分区技术、MV技术、并行技术及位图索引。因为并发量很高,批量更新时要分批快速提交,以避免阻塞的发生。

    OLTP 系统是一个数据块变化非常频繁,SQL 语句提交非常频繁的系统。 对于数据块来说,应尽可能让数据块保存在内存当中,对于SQL来说,尽可能使用变量绑定技术来达到SQL重用,减少物理I/O 和重复的SQL 解析,从而极大的改善数据库的性能。

       这里影响性能除了绑定变量,还有可能是热快(hot block)。 当一个块被多个用户同时读取时,Oracle 为了维护数据的一致性,需要使用Latch来串行化用户的操作。当一个用户获得了latch后,其他用户就只能等待,获取这个数据块的用户越多,等待就越明显。 这就是热快的问题。 这种热快可能是数据块,也可能是回滚端块。 对于数据块来讲,通常是数据库的数据分布不均匀导致,如果是索引的数据块,可以考虑创建反向索引来达到重新分布数据的目的,对于回滚段数据块,可以适当多增加几个回滚段来避免这种争用。

    OLAP,联机分析处理(Online Analytical Processing)系统

           有的时候也叫DSS决策支持系统,就是我们说的数据仓库。在这样的系统中,语句的执行量不是考核标准,因为一条语句的执行时间可能会非常长,读取的数据也非常多。所以,在这样的系统中,考核的标准往往是磁盘子系统的吞吐量(带宽),如能达到多少MB/s的流量。

             磁盘子系统的吞吐量则往往取决于磁盘的个数,这个时候,Cache基本是没有效果的,数据库的读写类型基本上是db file scattered read与direct path read/write。应尽量采用个数比较多的磁盘以及比较大的带宽,如4Gb的光纤接口。

    在OLAP系统中,常使用分区技术、并行技术。

       分区技术在OLAP系统中的重要性主要体现在数据库管理上,比如数据库加载,可以通过分区交换的方式实现,备份可以通过备份分区表空间实现,删除数据可以通过分区进行删除,至于分区在性能上的影响,它可以使得一些大表的扫描变得很快(只扫描单个分区)。另外,如果分区结合并行的话,也可以使得整个表的扫描会变得很快。总之,分区主要的功能是管理上的方便性,它并不能绝对保证查询性能的提高,有时候分区会带来性能上的提高,有时候会降低。

       并行技术除了与分区技术结合外,在Oracle 10g中,与RAC结合实现多节点的同时扫描,效果也非常不错,可把一个任务,如select的全表扫描,平均地分派到多个RAC的节点上去。

       在OLAP系统中,不需要使用绑定(BIND)变量,因为整个系统的执行量很小,分析时间对于执行时间来说,可以忽略,而且可避免出现错误的执行计划。但是OLAP中可以大量使用位图索引,物化视图,对于大的事务,尽量寻求速度上的优化,没有必要像OLTP要求快速提交,甚至要刻意减慢执行的速度。

       绑定变量真正的用途是在OLTP系统中,这个系统通常有这样的特点,用户并发数很大,用户的请求十分密集,并且这些请求的SQL 大多数是可以重复使用的。

       对于OLAP系统来说,绝大多数时候数据库上运行着的是报表作业,执行基本上是聚合类的SQL 操作,比如group by,这时候,把优化器模式设置为all_rows是恰当的。 而对于一些分页操作比较多的网站类数据库,设置为first_rows会更好一些。 但有时候对于OLAP 系统,我们又有分页的情况下,我们可以考虑在每条SQL 中用hint。 如:Select  a.* from table a;

    相关实践学习
    AnalyticDB MySQL海量数据秒级分析体验
    快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
    阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
    云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
    相关文章
    |
    8月前
    |
    Cloud Native OLAP OLTP
    在业务处理分析一体化的背景下,开发者如何平衡OLTP和OLAP数据库的技术需求与选型?
    在业务处理分析一体化的背景下,开发者如何平衡OLTP和OLAP数据库的技术需求与选型?
    202 4
    |
    5月前
    |
    数据挖掘 OLAP OLTP
    深入解析:OLTP与OLAP的区别与联系
    【8月更文挑战第31天】
    1667 0
    |
    5月前
    |
    关系型数据库 OLAP 分布式数据库
    揭秘Polardb与OceanBase:从OLTP到OLAP,你的业务选对数据库了吗?热点技术对比,激发你的选择好奇心!
    【8月更文挑战第22天】在数据库领域,阿里巴巴的Polardb与OceanBase各具特色。Polardb采用共享存储架构,分离计算与存储,适配高并发OLTP场景,如电商交易;OceanBase利用灵活的分布式架构,优化数据分布与处理,擅长OLAP分析及大规模数据管理。选择时需考量业务特性——Polardb适合事务密集型应用,而OceanBase则为数据分析提供强大支持。
    1505 2
    |
    8月前
    |
    数据挖掘 OLAP OLTP
    OLAP与OLTP相比,各自的特点是什么?
    【5月更文挑战第14天】OLAP与OLTP相比,各自的特点是什么?
    135 0
    |
    存储 OLAP OLTP
    分布式数据库的HTAP能统一OLTP和 OLAP吗?
    分布式数据库的HTAP能统一OLTP和 OLAP吗?
    178 0
    |
    存储 OLAP OLTP
    【数据库架构】OLTP 和 OLAP 的区别
    【数据库架构】OLTP 和 OLAP 的区别
    |
    存储 数据挖掘 OLAP
    【数据库架构】OLTP 和 OLAP:实际比较
    【数据库架构】OLTP 和 OLAP:实际比较
    |
    存储 SQL 数据挖掘
    【数据管理】OLAP 与 OLTP:有什么区别?
    【数据管理】OLAP 与 OLTP:有什么区别?
    |
    存储 分布式计算 安全
    「技术选型」OLTP 和OLAP的异同
    「技术选型」OLTP 和OLAP的异同
    |
    3月前
    |
    人工智能 自然语言处理 关系型数据库
    阿里云云原生数据仓库 AnalyticDB PostgreSQL 版已完成和开源LLMOps平台Dify官方集成
    近日,阿里云云原生数据仓库 AnalyticDB PostgreSQL 版已完成和开源LLMOps平台Dify官方集成。

    热门文章

    最新文章