『 Linux 』僵尸进程与孤儿进程

简介: 『 Linux 』僵尸进程与孤儿进程


🚀僵尸进程 - Z(zomble)

一个进程的创建与资源回收是由父进程或者是OS进行的;

而僵尸进程的概念即为,当进程退出时其并不被允许进行资源回收即会处于僵尸状态(Z);

其主要的原因是其父进程并没有读取到子进程退出的返回状态;

存在一程序:

#include<iostream>
#include<unistd.h>
int main(){
 pid_t id = fork();
  if(id>0){//父进程
    sleep(5);
    while(1){
    cout<<"id : " <<id <<"  pid : "<<getpid()<<"  ppid : "<<getppid()<<endl;
    }
  } 
  else{
    int n = 5;
    while(n--){//子进程
      cout<<"id : " <<id <<"  pid : "<<getpid()<<"  ppid : "<<getppid()<<endl;
    sleep(1);
     }
  }
  return 0;
}

在这段程序中,使用了fork()函数创建了一个子进程;

且这个子进程将在被创建后的五秒后退出;

但其父进程因为在调度队列当中并未对其子进程进行任何操作;

所以最终该子进程将会变为僵尸进程;

# 使用 while : ; do ps axj | head -1 && ps axj | grep myproc | grep -v grep; sleep 1; done 观察进程状态 
 PPID   PID  PGID   SID TTY      TPGID STAT   UID   TIME COMMAND
13665 14595 14595 13665 pts/1    14595 S+    1002   0:00 ./myproc
14595 14596 14595 13665 pts/1    14595 S+    1002   0:00 ./myproc
 PPID   PID  PGID   SID TTY      TPGID STAT   UID   TIME COMMAND
13665 14595 14595 13665 pts/1    14595 R+    1002   0:00 ./myproc
14595 14596 14595 13665 pts/1    14595 Z+    1002   0:00 [myproc] <defunct>

🛰️ 僵尸状态与死亡状态的区别 🛰️

  • 僵尸状态(Zombie)
    僵尸状态中的僵尸是一个很抽象的词(死了但没死透);
    对于进程而言就是这个进程已经结束了但是结束的不干净,其代码资源将会被回收但是其PCB结构体仍然将被维护;
    僵尸进程将一直保留其僵尸状态直至其父进程将它的状态读取并对其进行回收为止;
  • 死亡状态(dead)
    死亡状态顾名思义就是这个状态已经结束,且没有任何余痕;
    死亡状态是一种返回状态,所以不会在任务列表中看见这个状态;

而实际上僵尸状态和死亡状态一般为两种阶段的状态,当一个进程死亡时首先将会把它的状态设置为Z僵尸状态,在其成为僵尸状态时等待其父进程或者是OS操作系统对其进行回收;

父进程或者OS操作系统读取到了它的僵尸状态,将会进行一定的操作对其进行回收,此时这个进程将会出现瞬时性的死亡状态并退出;


🛰️ 僵尸状态的危害 🛰️

  • 僵尸状态将会一直维持该状态并等待其父进程或者OS操作系统对其状态进行读取并回收;
  • 僵尸进程在维持僵尸状态的同时将会一直维护其PCB结构体,若是系统中存在大量的僵尸进程将会严重的占用内存资源;本质上僵尸进程本身就算是一种内存泄漏的问题;

🚀孤儿进程

孤儿进程顾名思义就是该进程没有父进程;

#include<iostream>
#include<unistd.h>
int main(){
 pid_t id = fork();
  if(id>0){//父进程
    while(n--){
    cout<<"id : " <<id <<"  pid : "<<getpid()<<"  ppid : "<<getppid()<<endl;
    sleep(1);
    }
  } 
  else{
    while(1){//子进程
      cout<<"id : " <<id <<"  pid : "<<getpid()<<"  ppid : "<<getppid()<<endl;
    sleep(1);
     }
  }
  return 0;
}

该程序中,使用fork()创建了一个子进程,在5秒后将会结束其父进程;

id : 0  pid : 17347  ppid : 17346
id : 0  pid : 17347  ppid : 1
id : 0  pid : 17347  ppid : 1
id : 0  pid : 17347  ppid : 1
$^C id : 0  pid : 17347  ppid : 1

在该子进程的父进程结束后子进程将继续运行,并继续进行打印;

但实际上这个进程将也不能使用ctrl C结束;

将一个子进程在运行时,其父进程若是在子进程结束之前先结束,这个子进程将会成为孤儿进程;

从上面的代码段可知,当父进程被结束后,其子进程的PPID,即其父进程的PID将会变为1;

实际上PID为1的进程一般为init进程,可以将这个进程理解为操作系统,统称一个进程的父进程死亡后其将变成孤儿进程,而它的PPID将会变为1,这种一般称为托孤;

这里的托孤即表示这个进程将会被托付给init进程由它进行对该子进程的管理;


🛰️ 为什么托孤 🛰️

由于进程的创建以及回收等工作都是由其父进程或者OS进行操作;

而此时的父进程已经结束,若是这个子进程未被接管,将会没有其他的方式可以对其进行管理操作(包括回收等操作);

所以当一个孤儿进程成为孤儿进程时它将会直接被操作系统进行处理;

存在一个程序:

#include<iostream>
#include<unistd.h>
using namespace std;
int main(){
  pid_t id = fork();
  if(id == 0){
    int i = 5;
    while(i--){
      cout<<"子进程 PID: "<<getpid()<<" PPID:"<<getppid()<<endl;
      sleeo(1);
    }
  }
  else{
    int j = 7;
    while(j--){
      cout<<"父进程 PID: "<<getpid()<<" PPID:"<<getppid()<<endl;
      sleep(1);
    }
  }
  return 0;
}

在该程序中将会创建一个子进程,且在父进程退出之前子进程先退出使得子进程变为僵尸进程;

在变成僵尸进程之后的2秒后其父进程进行退出;

# 使用 while : ; do ps axj | head -1 && ps axj | grep myproc | grep -v grep; sleep 1; done 观察进程状态
14787 19377 19377 14787 pts/2    19377 S+    1002   0:00 ./myproc
19377 19378 19377 14787 pts/2    19377 S+    1002   0:00 ./myproc
 PPID   PID  PGID   SID TTY      TPGID STAT   UID   TIME COMMAND
14787 19377 19377 14787 pts/2    19377 S+    1002   0:00 ./myproc
19377 19378 19377 14787 pts/2    19377 Z+    1002   0:00 [myproc] <defunct>
 PPID   PID  PGID   SID TTY      TPGID STAT   UID   TIME COMMAND
# 程序运行后所显示
父进程 PID: 19377 PPID:14787
子进程 PID: 19378 PPID:19377
父进程 PID: 19377 PPID:14787
父进程 PID: 19377 PPID:14787
  • 为什么这里的子进程在僵尸状态下最终会被回收(父进程并未进行其他操作而直接结束);
    这里真正的原因是因为子进程比父进程先结束而成为了僵尸进程;
    而父进程结束之后这个僵尸进程将托孤给PID为1init进程,这个进程识别到这个被托孤的进程为僵尸进程将会直接将该进程资源进行回收;

相关文章
|
30天前
|
算法 Linux 调度
深入理解Linux操作系统的进程管理
本文旨在探讨Linux操作系统中的进程管理机制,包括进程的创建、执行、调度和终止等环节。通过对Linux内核中相关模块的分析,揭示其高效的进程管理策略,为开发者提供优化程序性能和资源利用率的参考。
67 1
|
19天前
|
存储 监控 Linux
嵌入式Linux系统编程 — 5.3 times、clock函数获取进程时间
在嵌入式Linux系统编程中,`times`和 `clock`函数是获取进程时间的两个重要工具。`times`函数提供了更详细的进程和子进程时间信息,而 `clock`函数则提供了更简单的处理器时间获取方法。根据具体需求选择合适的函数,可以更有效地进行性能分析和资源管理。通过本文的介绍,希望能帮助您更好地理解和使用这两个函数,提高嵌入式系统编程的效率和效果。
84 13
|
26天前
|
SQL 运维 监控
南大通用GBase 8a MPP Cluster Linux端SQL进程监控工具
南大通用GBase 8a MPP Cluster Linux端SQL进程监控工具
|
1月前
|
运维 监控 Linux
Linux操作系统的守护进程与服务管理深度剖析####
本文作为一篇技术性文章,旨在深入探讨Linux操作系统中守护进程与服务管理的机制、工具及实践策略。不同于传统的摘要概述,本文将以“守护进程的生命周期”为核心线索,串联起Linux服务管理的各个方面,从守护进程的定义与特性出发,逐步深入到Systemd的工作原理、服务单元文件编写、服务状态管理以及故障排查技巧,为读者呈现一幅Linux服务管理的全景图。 ####
|
2月前
|
缓存 监控 Linux
linux进程管理万字详解!!!
本文档介绍了Linux系统中进程管理、系统负载监控、内存监控和磁盘监控的基本概念和常用命令。主要内容包括: 1. **进程管理**: - **进程介绍**:程序与进程的关系、进程的生命周期、查看进程号和父进程号的方法。 - **进程监控命令**:`ps`、`pstree`、`pidof`、`top`、`htop`、`lsof`等命令的使用方法和案例。 - **进程管理命令**:控制信号、`kill`、`pkill`、`killall`、前台和后台运行、`screen`、`nohup`等命令的使用方法和案例。
153 4
linux进程管理万字详解!!!
|
2月前
|
缓存 算法 Linux
Linux内核的心脏:深入理解进程调度器
本文探讨了Linux操作系统中至关重要的组成部分——进程调度器。通过分析其工作原理、调度算法以及在不同场景下的表现,揭示它是如何高效管理CPU资源,确保系统响应性和公平性的。本文旨在为读者提供一个清晰的视图,了解在多任务环境下,Linux是如何智能地分配处理器时间给各个进程的。
|
2月前
|
存储 运维 监控
深入Linux基础:文件系统与进程管理详解
深入Linux基础:文件系统与进程管理详解
90 8
|
2月前
|
网络协议 Linux 虚拟化
如何在 Linux 系统中查看进程的详细信息?
如何在 Linux 系统中查看进程的详细信息?
168 1
|
2月前
|
Linux
如何在 Linux 系统中查看进程占用的内存?
如何在 Linux 系统中查看进程占用的内存?
|
2月前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
76 4