2023 年值得一读的技术文章 | NebulaGraph 技术社区

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: LLM 作为 2023 年技术圈的一大热点,Graph + RAG 如何更好地实践?让大家更好地了解图、知识图谱、大模型这一新的三元组呢?

在之前的产品篇,我们了解到了 NebulaGraph 内核及周边工具在 2023 年经历了什么样的变化。伴随着这些特性的变更和上线,在【文章】博客分类中,一篇篇的博文记录下了这些功能背后的设计思考和研发实践。当中,既有对内存管理 Memory Tracker 的原理讲解,也有对 NebulaGraph 的安装选择指引。

而 LLM 作为 2023 年技术圈的一大热点,NebulaGraph 也凭借 Graph + RAG 的契机,让社区用户了解到了在图、知识图谱、大模型这一新的三元组。无独有偶,社区小伙伴 @heikeladi 的《利用 ChatGLM 构建知识图谱》也开启了 GPT 构建知识图谱的新章节,让知识图谱的构建更加 easy。

不只是 LLM、图数据库 NebulaGraph,今年也是 DDIA(design data-intensive application)系列在 NebulaGraph 技术社区连载的第一年,从底层数据结构到顶层架构设计,带你更全面地了解分布式系统。

下面,来看看今年 NebulaGraph 技术社区有哪些博文值得你读一读。如果你觉得某篇文章不错,不要吝啬你的 ❤︎,你的评论和点赞是对作者们最好的赞赏 ❤︎。

LLM + GRAPH

自 2023.05,Wey 在 LlamaIndex 的 pr#2581 中第一次将图数据库、知识图谱和 LLM 放在一起,从此揭开了 Graph + RAG 的面纱。

利用 ChatGLM 构建知识图谱

这是一名东方财富算法工程师陈卓见的大模型实践,在经历 1.0 时代,会利用大量的规则和人力去提取和校验相应的数据,到 2.0 时代去构建相应的深度学习模型辅助完成 NER、实体链接,到现在大模型时代,利用大模型去清晰数据、标注和训练数据。本文给出了这位工程师的 Demo 分享;

LLM + NebulaGraph 三部曲

《图技术在 LLM 下的应用:知识图谱驱动的大语言模型 Llama Index》 中,Wey 详细地讲解了何为 LLM 范式,Llama Index 是如何同模型交互的,以及在 Embedding 和向量对搜索结果效果不佳的情况下,知识图谱是如何辅助增加搜索结果的。

作为上篇,它讲述了知识图谱同 LLM 的关系。在随后的《Text2Cypher:大语言模型驱动的图查询生成》《Graph RAG: 知识图谱结合 LLM 的检索增强》,分别讲述了自然语言到查询语言的转化:

  1. 将任务拆解成从自然语言中理解意图
  2. 找出实体
  3. 从意图和实体构造查询语句

以及 Graph RAG 与 Vector RAG 的结果对比,相比单独的向量搜索,有了知识图谱的 RAG 会更加精准。

向量检索 vs 关键词检索 vs 混合检索怎么选?

基于 Wey 在 Llama Index 以及 LangChain 的 Graph + RAG 贡献,海外工程师 Wenqi Glantz 对所有 Graph + LLM、RAG 方法进行了全面的实验、评估、综述、总结和分析。《7 种查询策略教你用好 Llama Index 和 NebulaGraph 探索知识图谱》 便是本次实验测评的中文译文:

哪个查询引擎最适合,将取决于你的特定使用情况。

  • 如果你的数据源中的知识片段是分散和细粒度的,并且你需要对你的数据源进行复杂的推理,如提取实体和它们在网格中的关系,如在欺诈检测、社交网络、供应链管理,那么知识图谱查询引擎是一个更好的选择。当你的 Embedding 生成假相关性,导致幻觉时,KG 查询引擎也很有帮助。
  • 如果你需要相似性搜索,如找到所有与给定节点相似的节点,或找到在向量空间中最接近给定节点的所有节点,那么向量查询引擎可能是你的最佳选择;
  • 如果你需要一个能快速响应的查询引擎,那么向量查询引擎可能是一个更好的选择,因为它们通常比 KG 查询引擎更快。即使没有 Embedding,任务的提取(运行在 NebulaGraph 单个 storage 服务上的子任务)也可能是 KG 查询引擎延迟高的主要原因;
  • 如果你需要高质量的回答,那么自定义组合查询引擎,它结合了 KG 查询引擎和向量查询引擎的优势,是你最好的选择。

新手友好

使用 NebulaGraph 的第一步便是安装部署,如何提供保姆级的安装教程,让新用户 Step By Step 按照教程完成一开始的部署安装呢?想必没有比 @堕落飞鸟 更合适回答这个问题的人了。

用上 NebulaGraph

NebulaGraph 技术社区年度征文活动中,飞鸟以一己之力更新了 5 篇极度新手友好的部署安装相关文章:

《NebulaGraph 安装方式选择》中不只是给出了 7 种安装方式:编译、Docker 编译、单机部署、集群部署、Docker-Compose 安装、K8s 安装和 Docker 集群部署,还给出了这 7 种方式的优劣。下图仅供参考:

编译安装 Docker 编译安装 单机安装 集群安装 Docker-Compose 安装 K8s 安装 Docker 集群
部署维护难度 ★★ ★★ ★★★ ★★ ★★★ ★★
所需资源 ★★★ ★★ ★★★ ★★★
高可用,高性能 ★★★ ★★ ★★★ ★★★

而随后飞鸟更新的 《NebulaGraph 的备份管理》 则详细地记录了使用备份工具 BR 的过程。不同于 Linux 之类的本地环境,容器化部署的备份方式也是部分社区小伙伴关心的话题。《NebulaGraph 使用 Docker-Compose 部署方式如何备份还原》 便是一个详细到没朋友的容器化部署备份文。

无独有偶,《使用 RKE 方式搭建 K8s 集群并部署 NebulaGraph》 则从 K8s 入手,用一文留下了他是如何使用 RKE 来搭建 NebulaGraph 的过程。《构建 Nebula Graph 3.3.0 和 Nebula Studio 3.7.0 在 ARM 架构上的指南》 则为 ARM 用户带来了一丝暖意,无痛地在 ARM 上用上 NebulaGraph 和 NebulaGraph Studio。

等你有了良好的 NebulaGraph 运行环境,下面就可以试试《使用 NebulaGraph Exchange 通过 Hadoop 导入 OwnThink 数据》,领略一下千亿知识图谱 OwnThink 导入 NebulaGraph 的全过程,以及用这个知识图谱搭建你自己的智能机器人。而《可视化探讨 NebulaGraph 开源社区中的贡献关系》在提供数据集的基础之上,手把手教你如何用可视化探索工具进行导数、查询,观察到数据之间的关系。

上面讲到的用上 NebulaGraph 的 case 都是从零到一,搭建一个空的图数据库,但是如果你已经拥有了成百亿上千亿的数据,如何无缝切换到 NebulaGraph 模式呢?《图数据库系统重构之路》 给那些时间紧、对已有技术栈不了的社区小伙伴指明了方向,重构应该这样做:

  1. 对外接口梳理:梳理系统所有对外接口,包括接口名、接口用途、请求量 QPS、平均耗时,调用方(服务和 IP);
  2. 老系统核心流程梳理:输出老系统整理架构图,重要的接口(大概 10 个)输出流程图;
  3. 环境梳理:涉及到的需要改造的项目有哪些,应用部署、MySQL、Redis、HBase 集群 IP,及目前线上部署分支整理;
  4. 触发场景:接口都是如何触发的,从业务使用场景出发,每个接口至少一个场景覆盖到,方便后期功能验证;
  5. 改造方案:可行性分析,针对每一个接口,如何改造(OrientDB 语句改为 NebulaGraph 查询语句),入图(写流程)如何改造;
  6. 新系统设计方案: 输出整理架构图,核心流程图。

用好 NebulaGraph

当你有了良好的运行环境,面临的就是如何将你的业务 NebulaGraph 化的问题。也许你是从 MySQL 之类关系型数据库来一探图数据库的奇妙,也许你是从 Neo4j、JanusGraph 来想看看 NebulaGraph 的高性能。这时候有一份贴心的进阶使用指南,就非常完美了。

说到进阶用法,有什么比同广大用户频繁交流,获得他们使用姿势,进而总结出的一份产品最佳实践更合适的呢?《使用秘籍|如何实现图数据库 NebulaGraph 的高效建模、快速导入、性能优化》 由 NebulaGraph 产品总监出品,它收录了从图建模开始的各类优化指南,没想到你的 VID 大小也和性能息息相关,更别提多块硬盘竟然能左右写速率。文中收录了各种获取高性能的技巧,如果是新手的话,读一读必有收获。

除了产品的最佳实践,NebulaGraph 的资深研发和布道师也从执行计划角度,让大家了解查询语句生命周期之余,读明白那些执行算子的作用,以及语句执行的耗时点在何处:

说完官方出品的使用指北,再来看看其他小伙伴是咋用好 NebulaGraph 的。在今年开启的 Happy Office Hour 便是一个官方对话用户的活动,在活动中 NebulaGraph 的资深用户会和大家交流他们的使用姿势,而相关的会议纪要你将了解到更多的 NebulaGraph 实用技能。正如第一期会议纪要《如何提升 meta 性能?提高 TTL 删除速率?主备集群怎么做…Happy Office Hour 第一期会议纪要告诉你》 所记录的那样,你可以了解到大企业他们面临的业务问题,以及如何更好地解决、规避这个问题。

内存管控

资源的使用,尤其是内存的使用,是社区用户关心的一大重点。而到底 NebulaGraph 有哪些地方需要使用内存?这是 @肖小可爱乐乐 在文章《NebulaGraph 的内存探查》 中所要探讨的主题。

NebulaGraph 内存初探

一般来说数据库会在多个方面使用到内存,比如:线程池、缓冲区、索引等等。在《NebulaGraph 的内存探查》 中,作者先从一般数据库的内存消耗点讲起,再娓娓道来 NebulaGraph 的工作流程,最后通过实验数据查看在数据导入之后,nebula-storage 的内存使用量变化。

虽然文章并未提及到查询时内存的消耗情况,但是通过本文你将了解一些 nebula-storage 存储方面的内存使用点。下面摘录了部分结论:

  • 面对重复插入的数据,nebula 采用忽略掉的机制。假使数据长度不符合不能写入 nebula-storage,将会都写入 nebula-storage 的 err 日志上,不会占用内存。
  • 当 CPU 个数较少,Compact 落盘释放内存资源的速度慢于写入数据的速度,内存会持续上升。
  • 读操作统计 Tag 和 Edge 个数,假设个数太多将耗费 nebula-storage 大量的内存,如果 nebula-storage 有写入操作,很容易令 nebula 进入崩溃状态。

如果你想了解 nebula-storage 这块的内存消耗,不妨读一读此文参考下。此外,在《NebulaGraph 内存分析》 中,浅析了下三大服务——metad、graphd、storaged 的内存消耗点,可作为理论输入,再结合你具体的业务场景再探内存用量。

Memory Tracker

数据库的内存管理是数据库内核设计中的重要模块,内存的可度量、可管控是数据库稳定性的重要保障。图数据库的多度关联查询特性,往往使图数据库执行层对内存的需求量巨大。

《内存管理实践之 Memory Tracker》主要介绍 NebulaGraph v3.4 版本中引入的新特性 Memory Tracker,希望通过 Memory Tracker 模块的引入,实现细粒度的内存使用量管控,降低 graphd 和 storaged 发生被系统 OOM kill 的风险,提升 NebulaGraph 图数据库的内核稳定性。

memory_tracker

另类实践

大多数的用户都是使用官方提供的周边工具,例如:nebula-java 客户端来操作图数据,而 auhusy 则对 nebula-python 在《python 简单封装CRUD》进行了封装,CurvusY 用 Dart 对 NebulaGraph 进行了移动端适配,开发出来了nebula_dart_gdbc,在手机端也可能查询图数据,《使用 GraphQL 语法查询 NebulaGraph 中的数据》则记下了 Dragonchu 对 GraphQL 的适配,让前端自由地选择想要的数据。

聊聊数据库和分布式

除了 NebulaGraph 使用相关的文章之外,本年度还有同分布式系统相关的 DDIA 系列,以及 RocksDB 的讲解文。

DDIA 系列由数据库研发人员从自身的开发经验出发,结合原书传授的数据系统的设计理念,深入浅出地道明数据系统中的精妙之处。

《一文科普 RocksDB 工作原理》 全方位讲解 kv 嵌入数据库 RocksDB 的核心概念 LSM-Tree、MemTable 和 SSTables,《RocksDB Iterator Internal, part 1》 从工程师角度,以源码阅读的形式带你深入了解 RocksDB 的组件。


2023 年的文章介绍告一段落,感谢你的阅读 (///▽///) 。你可以前往论坛-文章区,阅读本年度所有的文章。

如果你有什么想看,但是社区并没有安排上,来和星云小姐姐 说道说道。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
5月前
|
JavaScript 前端开发 测试技术
Angular与NestJS的神奇之处:如何用全栈技术让你的项目一鸣惊人?
【8月更文挑战第31天】在现代软件开发中,全栈开发已成为主流。借助Google支持的开源前端框架Angular及基于TypeScript的Node.js框架NestJS,我们可以构建出高性能的全栈应用。本文将探讨Angular与NestJS的结合方式,并通过示例代码展示如何创建全栈Angular应用。了解应用需求、编写测试和关注性能是实现这一目标的关键步骤。随着Angular和NestJS生态的不断发展,它们必将在未来的Web开发中发挥更大的作用。
123 0
|
5月前
|
存储 前端开发 JavaScript
"Angular与AWS Amplify的神奇之处:如何用云端连接技术让你的项目一鸣惊人?"
【8月更文挑战第31天】在现代软件开发中,云端连接的前端应用已成为主流。本文探讨了Angular与AWS Amplify的结合,展示了如何通过示例代码快速构建云端连接的前端应用。Angular是由Google支持的开源前端框架,而AWS Amplify是AWS提供的云服务,两者结合可以快速构建云端连接的前端应用。文中还分享了一些最佳实践,帮助开发者更高效地使用这两种技术构建高性能的云端连接的前端应用。随着Angular和AWS Amplify生态的不断成熟,它们将在未来的Web开发中扮演更加重要的角色。
60 0
|
7月前
|
Python
Mandelbrot集的最新变化形态一览——MandelBox,Mandelbulb,Burning Ship,NebulaBrot
该文介绍了几种基于Mandelbrot集的衍生形态,包括Mandelbulb、MandelBox、Burning Ship和NebulaBrot。Mandelbulb是3D扩展,使用球坐标;MandelBox利用盒映射创造复杂形状;Burning Ship以复数模和实部迭代;NebulaBrot则结合多种分形特征。文中提供了简单的Python代码示例来生成这些图形,并提到了相关学习资源。
|
人工智能 分布式计算 算法
手把手教你用 NebulaGraph AI 全家桶跑图算法
ng_ai 的全名是:Nebulagraph AI Suite,顾名思义,它是在 NebulaGraph 之上跑算法的 Python 套件,希望能给 NebulaGraph 的用户一个自然、简洁的高级 API。简单来说,用很少的代码量就可以执行图上的算法相关的任务。
111 0
手把手教你用 NebulaGraph AI 全家桶跑图算法
|
8月前
|
数据可视化 Java 数据库
回顾 2023,NebulaGraph 的这一年的变化
在整体上,从 v3.3.0 到 v3.6.0,NebulaGraph 的稳定性有了明显的提升;而最新的发行版 v3.6.0 版本,在性能上,针对图上常用的路径查询、多跳查询上,均有不同程度的性能提升,最高提升了 6 倍。
110 0
回顾 2023,NebulaGraph 的这一年的变化
|
存储 NoSQL 算法
使用秘籍|如何实现图数据库 NebulaGraph 的高效建模、快速导入、性能优化
NebulaGraph 技术社区用户的实践优化心得集大成者,从数据建模开始,解决数据膨胀问题,再到软硬皆施搞定数据导入的速率,到最后的查询语句优化。一站式搞定数据库的性能问题。
712 0
使用秘籍|如何实现图数据库 NebulaGraph 的高效建模、快速导入、性能优化
|
弹性计算 监控 NoSQL
数据库重构之路,以 OrientDB 到 NebulaGraph 为例
如果你想尝鲜图数据库 NebulaGraph,记得去 GitHub 下载、使用、(^з^)-☆ star 它 -> GitHub;和其他的 NebulaGraph 用户一起交流图数据库技术和应用技能,留下「你的名片」一起玩耍呀~
117 0
|
存储 NoSQL Redis
课时7:Tair生态及开源module的使用
课时7:Tair生态及开源module的使用
|
存储 运维 Kubernetes
云原生基础设施实践:NebulaGraph 的 KubeBlocks 集成故事
像是 NebulaGraph 这类基础设施上云,通用的方法一般是将线下物理机替换成云端的虚拟资源,依托各大云服务厂商实现“服务上云”。但还有一种选择,就是依托云数据基础设施,将数据库产品变成为云生态的一环,不只是提供自身的数据云服务,还能同其他的数据库一起分析挖掘业务数据价值。
129 0
云原生基础设施实践:NebulaGraph 的 KubeBlocks 集成故事
|
弹性计算 监控 NoSQL
图数据库系统重构之路:从OrientDB迁移到NebulaGraph 真实案例分享
图数据库系统重构之路:从OrientDB迁移到NebulaGraph 真实案例分享
201 0