如何保证缓存和数据库数据一致性

简介: 如何保证缓存和数据库数据一致性

保证缓存和数据库数据一致性是一个复杂的问题,它涉及到缓存策略、数据更新机制、系统架构等多个方面。下面我将介绍一些常见的策略来确保缓存和数据库之间的数据一致性。

「1. 缓存失效策略」

「读取操作:」

  • 当读取数据时,首先查询缓存。
  • 如果缓存中有数据,则直接返回缓存数据。
  • 如果缓存中没有数据,则从数据库中读取数据,然后将数据写入缓存,并返回给客户端。

「更新操作:」

  • 当更新数据库时,同时使缓存中的数据失效。
  • 可以在更新数据库成功后,立即删除缓存中的数据。
  • 或者,使用延迟双删策略,在更新数据库前后都删除缓存。

「2. 写入时更新缓存」

  • 在更新数据库的同时,同步更新缓存中的数据。
  • 这种策略要求更新操作必须是原子性的,以避免更新缓存成功而更新数据库失败的情况。

「3. 使用消息队列」

  • 更新操作写入消息队列,然后由消息队列保证最终一致性。
  • 消费者从队列中读取更新消息,并按照消息顺序更新数据库和缓存。

「4. 事务性缓存」

  • 使用支持事务的缓存解决方案,如使用支持事务的缓存中间件。
  • 在数据库事务提交的同时,提交缓存的变更。

「5. 最终一致性模型」

  • 接受缓存和数据库之间存在短暂的数据不一致。
  • 通过设置缓存的过期时间,保证数据最终会被更新。

「6. 使用缓存框架的一致性支持」

  • 使用像Hazelcast、Apache Ignite这样的分布式缓存解决方案,它们提供了一些内置的数据一致性保证机制。

「注意事项」

  • 「缓存穿透」:对于数据库中不存在的数据,缓存层应该缓存这个空结果,避免对数据库造成不必要的压力。
  • 「缓存雪崩」:缓存中大量数据同时失效,导致数据库压力骤增。可以通过设置不同的缓存过期时间来避免。
  • 「缓存击穿」:热点数据失效后,大量并发请求直接打到数据库。可以使用互斥锁或者分布式锁来保护数据加载过程。

「总结」

保证缓存和数据库之间的数据一致性需要综合考虑系统的实际需求和特点,选择合适的策略,并且可能需要结合多种策略来实现。在实际应用中,往往需要在性能、复杂度和一致性之间做出权衡。

相关文章
|
5天前
|
存储 缓存 NoSQL
云端问道21期方案教学-应对高并发,利用云数据库 Tair(兼容 Redis®*)缓存实现极速响应
云端问道21期方案教学-应对高并发,利用云数据库 Tair(兼容 Redis®*)缓存实现极速响应
|
5天前
|
缓存 NoSQL 关系型数据库
云端问道21期实操教学-应对高并发,利用云数据库 Tair(兼容 Redis®)缓存实现极速响应
本文介绍了如何通过云端问道21期实操教学,利用云数据库 Tair(兼容 Redis®)缓存实现高并发场景下的极速响应。主要内容分为四部分:方案概览、部署准备、一键部署和完成及清理。方案概览中,展示了如何使用 Redis 提升业务性能,降低响应时间;部署准备介绍了账号注册与充值步骤;一键部署详细讲解了创建 ECS、RDS 和 Redis 实例的过程;最后,通过对比测试验证了 Redis 缓存的有效性,并指导用户清理资源以避免额外费用。
|
24天前
|
缓存 NoSQL Serverless
云数据库Tair:从稳定低延时缓存到 Serverless KV
本次分享聚焦云数据库Tair的使用,涵盖三部分内容:1) Tair概览,介绍其作为稳定低延时缓存及KV数据库服务的特点和优势;2) 稳定低延迟缓存技术,探讨如何通过多线程处理、优化内核等手段提升性能与稳定性;3) 从缓存到Serverless KV的演进,特别是在AI大模型时代,Tair如何助力在线服务和推理缓存加速。Tair在兼容性、性能优化、扩缩容及AI推理加速方面表现出色,满足不同场景需求。
|
1月前
|
缓存 物联网 数据库
InfluxDB vs TDengine :2025 年了,谁家用的数据库还不能高效读缓存?
在工业互联网和物联网的大数据应用场景中,实时数据的写入和查询性能至关重要。如何快速获取最新设备状态并实时处理数据,直接影响到业务的高效运转。本文将深入分析 TDengine 和 InfluxDB 在缓存机制上的差异,帮助读者更好地理解这两款主流时序数据库在性能优化方面的优劣。
117 1
|
27天前
|
存储 消息中间件 设计模式
缓存数据一致性策略如何分类?
数据库与缓存数据一致性问题的解决方案主要分为强一致性和最终一致性。强一致性通过分布式锁或分布式事务确保每次写入后数据立即一致,适合高要求场景,但性能开销大。最终一致性允许短暂延迟,常用方案包括Cache-Aside(先更新DB再删缓存)、Read/Write-Through(读写穿透)和Write-Behind(异步写入)。延时双删策略通过两次删除缓存确保数据最终一致,适用于复杂业务场景。选择方案需根据系统复杂度和一致性要求权衡。
50 0
|
2月前
|
缓存 NoSQL 数据库
运用云数据库 Tair 构建缓存为应用提速,完成任务得苹果音响、充电套装等好礼!
本活动将带大家了解云数据库 Tair(兼容 Redis),通过体验构建缓存以提速应用,完成任务,即可领取罗马仕安卓充电套装,限量1000个,先到先得。邀请好友共同参与活动,还可赢取苹果 HomePod mini、小米蓝牙耳机等精美好礼!
|
3月前
|
缓存 弹性计算 NoSQL
新一期陪跑班开课啦!阿里云专家手把手带你体验高并发下利用云数据库缓存实现极速响应
新一期陪跑班开课啦!阿里云专家手把手带你体验高并发下利用云数据库缓存实现极速响应
|
3月前
|
SQL 缓存 Java
JVM知识体系学习三:class文件初始化过程、硬件层数据一致性(硬件层)、缓存行、指令乱序执行问题、如何保证不乱序(volatile等)
这篇文章详细介绍了JVM中类文件的初始化过程、硬件层面的数据一致性问题、缓存行和伪共享、指令乱序执行问题,以及如何通过`volatile`关键字和`synchronized`关键字来保证数据的有序性和可见性。
46 3
|
27天前
|
存储 Oracle 关系型数据库
数据库传奇:MySQL创世之父的两千金My、Maria
《数据库传奇:MySQL创世之父的两千金My、Maria》介绍了MySQL的发展历程及其分支MariaDB。MySQL由Michael Widenius等人于1994年创建,现归Oracle所有,广泛应用于阿里巴巴、腾讯等企业。2009年,Widenius因担心Oracle收购影响MySQL的开源性,创建了MariaDB,提供额外功能和改进。维基百科、Google等已逐步替换为MariaDB,以确保更好的性能和社区支持。掌握MariaDB作为备用方案,对未来发展至关重要。
55 3
|
27天前
|
安全 关系型数据库 MySQL
MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!
《MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!》介绍了MySQL中的三种关键日志:二进制日志(Binary Log)、重做日志(Redo Log)和撤销日志(Undo Log)。这些日志确保了数据库的ACID特性,即原子性、一致性、隔离性和持久性。Redo Log记录数据页的物理修改,保证事务持久性;Undo Log记录事务的逆操作,支持回滚和多版本并发控制(MVCC)。文章还详细对比了InnoDB和MyISAM存储引擎在事务支持、锁定机制、并发性等方面的差异,强调了InnoDB在高并发和事务处理中的优势。通过这些机制,MySQL能够在事务执行、崩溃和恢复过程中保持
64 3