GO闭包实现原理(汇编级讲解)

简介: 函数闭包一点也不神秘,它就是函数和引用环境而组合的实体。在Go中,闭包在底层是一个结构体对象,它包含了函数指针与自由变量。Go编译器的逃逸分析机制,会将闭包对象分配至堆中,这样自由变量就不会随着函数栈的销毁而消失,它能依附着闭包实体而一直存在。因此,闭包使用的优缺点是很明显的:闭包能够避免使用全局变量,转而维持自由变量长期存储在内存之中;但是,这种隐式地持有自由变量,在使用不当时,会很容易造成内存浪费与泄露。附着闭包实体而一直存在。

go语言闭包实现原理(汇编层解析)

1.起因

今天开始学习go语言,在学到go闭包时候,原本以为go闭包的实现方式就是类似于如下cpp lambda

  1. value通过值传递,mutable修饰可以让value可以修改,但是地址不可能一样
  2. value通过引用传递,但是在其他地方调用时,这个value局部变量早就释放,会访问到脏数据
std::function<void()> func(){
   
   
    int value = 666;
    return [value]()mutable{
   
   
            value++;
            std::cout << &value;
        }
}

但是经过测试,我居然惊奇的发现在go的fun函数闭包value变量的地址一模一样,但是在c++的理解中这是不可能的(c++中栈随着函数退出而销毁,value也成为脏数据,一旦访问很可能会读到意料之外的数据)

image-20231130212413187

image-20231130212421755

image-20231130212432275

2.探索

于是,我查看了go编译后的汇编代码,首先先看看闭包经典代码,再看删除第六行不在闭包内修改变量value的变化的汇编代码

1.闭包经典代码

image-20231130221210920

image-20231130221309176

首先,我们发现不一样的是 var value int = 100 会调用 runtime.newobject 函数(内置new函数的底层函数,它返回数据类型指针)。在正常函数局部变量的定义时,例如下:

2.删除第六行代码,不在闭包中修改value

image-20231130221400666

我们能发现 var value int = 100 是不会调用 runtime.newobject 函数的,它对应的汇编是如下

image-20231130223626467

对比两段代码的汇编,我们可以看见一个数据结构:闭包对象数据结构

type noalg struct{
   
   
    F unitptr    //函数对象
    X0 *int        //第一段代码的汇编,在闭包内修改对象
    //X0 int    //第二段代码的汇编,不在闭包内修改对象
}

之后,在通过 runtime.newobject 函数创建了闭包对象。而且由于 LEAQ xxx yyy代表的是将 xxx 指针,传递给 yyy,因此 outer 函数最终的返回,其实是闭包结构体对象指针。很明显,闭包对象会被分配至堆上,变量x也会随着对象逃逸至堆。这就很好地解释了为什么x变量没有随着函数栈的销毁而消亡。

验证

通过go build指令的逃逸分析,可以看见,第一段代码的变量value和函数对象都分配到了堆上面

这其实就是Go编译器做得精妙的地方:当闭包内没有对外部变量造成修改时,Go 编译器会将自由变量的引用传递优化为直接值传递,避免变量逃逸。

PS D:\goProject\src\learn> go build -gcflags '-m -m -l' main.go
# command-line-arguments
./main.go:4:6: fun capturing by ref: value (addr=false assign=true width=8)
./main.go:7:13: value escapes to heap:
./main.go:7:13:   flow: {storage for ... argument} = &{storage for value}:
./main.go:7:13:     from value (spill) at ./main.go:7:13
./main.go:7:13:     from ... argument (slice-literal-element) at ./main.go:7:12
./main.go:7:13:   flow: {heap} = {storage for ... argument}:
./main.go:7:13:     from ... argument (spill) at ./main.go:7:12
./main.go:7:13:     from fmt.Print(... argument...) (call parameter) at ./main.go:7:12
./main.go:5:9: func literal escapes to heap:
./main.go:5:9:   flow: ~r0 = &{storage for func literal}:
./main.go:5:9:     from func literal (spill) at ./main.go:5:9
./main.go:5:9:     from return func literal (return) at ./main.go:5:2
./main.go:4:6: value escapes to heap:
./main.go:4:6:   flow: {storage for func literal} = &value:
./main.go:4:6:     from value (captured by a closure) at ./main.go:6:3
./main.go:4:6:     from value (reference) at ./main.go:6:3
./main.go:4:6: moved to heap: value                //变量value逃逸
./main.go:5:9: func literal escapes to heap        //函数逃逸
./main.go:7:12: ... argument does not escape
./main.go:7:13: value escapes to heap

总结

函数闭包一点也不神秘,它就是函数和引用环境而组合的实体。在Go中,闭包在底层是一个结构体对象,它包含了函数指针与自由变量。

Go编译器的逃逸分析机制,会将闭包对象分配至堆中,这样自由变量就不会随着函数栈的销毁而消失,它能依附着闭包实体而一直存在。因此,闭包使用的优缺点是很明显的:闭包能够避免使用全局变量,转而维持自由变量长期存储在内存之中;但是,这种隐式地持有自由变量,在使用不当时,会很容易造成内存浪费与泄露。
附着闭包实体而一直存在。因此,闭包使用的优缺点是很明显的:闭包能够避免使用全局变量,转而维持自由变量长期存储在内存之中;但是,这种隐式地持有自由变量,在使用不当时,会很容易造成内存浪费与泄露。

目录
相关文章
|
Go
Go 语言 errgroup 库的使用方式和实现原理
Go 语言 errgroup 库的使用方式和实现原理
216 0
|
5月前
|
存储 运维 安全
go语言中闭包与匿名函数是什么?
本文探讨了Go语言中的匿名函数与闭包。首先介绍了匿名函数的定义与使用方式,包括直接调用、赋值给变量以及作为全局变量的应用。接着深入解析了闭包的概念及其本质,强调闭包能实现状态保持,但也警告其不当使用可能导致复杂的内存管理和运维问题。通过示例展示了如何利用闭包实现累加器功能,并对比了使用结构体字段的方法。最后,通过一个并发场景的示例说明了闭包在Go中处理多协程安全访问共享数据的应用,展示了闭包结合锁机制确保数据一致性的方式。
|
5月前
|
分布式计算 安全 Java
简单易懂的 Go 泛型使用和实现原理介绍
简单易懂的 Go 泛型使用和实现原理介绍
|
7月前
|
存储 安全 测试技术
【Go语言精进之路】构建高效Go程序:了解map实现原理并高效使用
【Go语言精进之路】构建高效Go程序:了解map实现原理并高效使用
76 3
|
7月前
|
存储 监控 Go
【Go语言精进之路】构建高效Go程序:了解切片实现原理并高效使用
【Go语言精进之路】构建高效Go程序:了解切片实现原理并高效使用
101 3
|
5月前
|
编译器 Go
Go语言中的闭包:封装数据与功能的强大工具
Go语言中的闭包:封装数据与功能的强大工具
|
7月前
|
Go
go的函数定义、递归、延迟、匿名、高阶、闭包
go的函数定义、递归、延迟、匿名、高阶、闭包
|
7月前
|
Go
Go语言进阶篇——浅谈函数中的闭包
Go语言进阶篇——浅谈函数中的闭包
|
8月前
|
Go C++
go 语言回调函数和闭包
go 语言回调函数和闭包
|
8月前
|
存储 缓存 编译器
Go语言解析Tag:深入探究实现原理
【2月更文挑战第20天】
339 2