大数据数据库增量日志采集之Canal

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 大数据数据库增量日志采集之Canal

1. Canal 入门

1.1 什么是 Canal

Canal 是用 Java 开发的基于数据库增量日志解析,提供增量数据订阅&消费的中间件。

目前。Canal 主要支持了 MySQL 的 Binlog 解析,解析完成后才利用 Canal Client 来处理获得
的相关数据

1.2 MySQL 的 Binlog

1.2.1 什么是 Binlog

MySQL 的二进制日志可以说 MySQL 最重要的日志了,它记录了所有的 DDL 和 DML(除了数据查询语句)语句,以事件形式记录,还包含语句所执行的消耗的时间,MySQL 的二进制日志是事务安全型的。

一般来说开启二进制日志大概会有 1%的性能损耗。二进制有两个最重要的使用场景:

其一:MySQL Replication 在 Master 端开启 Binlog,Master 把它的二进制日志传递给 Slaves来达到 Master-Slave 数据一致的目的。

其二:自然就是数据恢复了,通过使用 MySQL Binlog 工具来使恢复数据。

二进制日志包括两类文件:二进制日志索引文件(文件名后缀为.index)用于记录所有的二进制文件,二进制日志文件(文件名后缀为.00000*)记录数据库所有的 DDL 和 DML(除了数据查询语句)语句事件。

1.2.2 Binlog 的分类

MySQL Binlog 的格式有三种,分别是 STATEMENTMIXEDROW。在配置文件中可以选择配置 binlog_format= statement|mixed|row。三种格式的区别:

1)statement:语句级,binlog 会记录每次一执行写操作的语句。相对 row 模式节省空间,但是可能产生不一致性,比如“update tt set create_date=now()”,如果用 binlog 日志进行恢复,由于执行时间不同可能产生的数据就不同。

优点:节省空间。

缺点:有可能造成数据不一致。

2)row:行级, binlog 会记录每次操作后每行记录的变化。

优点:保持数据的绝对一致性。因为不管 sql 是什么,引用了什么函数,他只记录执行后的效果。

缺点:占用较大空间。

3)mixed:statement 的升级版,一定程度上解决了,因为一些情况而造成的 statement模式不一致问题,默认还是 statement,在某些情况下譬如:当函数中包含 UUID() 时;包含AUTO_INCREMENT 字段的表被更新时;执行 INSERT DELAYED 语句时;用 UDF 时;会按照ROW 的方式进行处理。

优点:节省空间,同时兼顾了一定的一致性。

缺点:还有些极个别情况依旧会造成不一致,另外 statement 和 mixed 对于需要对binlog 的监控的情况都不方便。

综合上面对比,Canal 想做监控分析,选择 row 格式比较合适。

1.3 Canal 的工作原理

1.3.1 MySQL 主从复制过程

1) Master 主库将改变记录,写到二进制日志(Binary Log)中;

2) Slave 从库向 MySQL Master 发送 dump 协议,将 Master 主库的 binary log events 拷贝

到它的中继日志(relay log);

3) Slave 从库读取并重做中继日志中的事件,将改变的数据同步到自己的数据库。

1.3.2 Canal 的工作原理
  • canal 模拟 MySQL slave 的交互协议,伪装自己为 MySQL slave ,向 MySQL master 发送dump 协议
  • MySQL master 收到 dump 请求,开始推送 binary log 给 slave (即 canal )
  • canal 解析 binary log 对象(原始为 byte 流)

2. 环境准备

2.1 创建数据库

2.2 创建数据表

CREATE TABLE user_info(
    `id` VARCHAR(255),
    `name` VARCHAR(255),
    `sex` VARCHAR(255)
);

2.3 修改配置文件开启 Binlog

$:sudo vim /etc/my.cnf
server-id=1
log-bin=mysql-bin
binlog_format=row
binlog-do-db=gmall-2021

注意:binlog-do-db 根据自己的情况进行修改,指定具体要同步的数据库,如果不配置则表示所有数据库均开启 Binlog

2.4 重启 MySQL 使配置生效

sudo systemctl restart mysqld

/var/lib/mysql 目录下查看初始文件大小 154

2.5 测试 Binlog 是否开启

1) 插入数据

INSERT INTO user_info VALUES('1001','zhangsan','male');

2)再次到/var/lib/mysql 目录下,查看 index 文件的大小

2.6 创建账户

在 MySQL 中执行

set global validate_password_length=4;
set global validate_password_policy=0;
GRANT SELECT, REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO 'canal'@'%' IDENTIFIED BY 'canal' ;

3. Canal 的下载和安装

3.1 下载并解压 Jar 包

下载地址

将安装包拷贝到/opt/sortware 目录下,然后解压到/opt/module/canal包下

注意:canal 解压后是分散的,我们在指定解压目录的时候需要将 canal 指定上

mkdir /opt/module/canal
tar -zxvf canal.deployer-1.1.2.tar.gz -C /opt/module/canal

3.2 修改 canal.properties 的配置

$ pwd
/opt/module/canal/conf
$ vim canal.properties
#################################################
######### common argument ############# 
#################################################
canal.id = 1
canal.ip =
canal.port = 11111
canal.metrics.pull.port = 11112
canal.zkServers =
# flush data to zk
canal.zookeeper.flush.period = 1000
canal.withoutNetty = false
# tcp, kafka, RocketMQ
canal.serverMode = tcp
# flush meta cursor/parse position to file

说明: 这个文件是 canal 的基本通用配置,canal 端口号默认就是 11111,修改 canal 的输出 model,默认 tcp,改为输出到 kafka。

 多实例配置如果创建多个实例,通过前面 canal 架构,我们可以知道,一个 canal 服务中可以有多个 instance,conf/下的每一个 example 即是一个实例,每个实例下面都有独立的配置文件。默认只有一个实例 example,如果需要多个实例处理不同的 MySQL 数据的话,直接拷贝出多个 example,并对其重新命名,命名和配置文件中指定的名称一致,然后修改canal.properties 中的 canal.destinations=实例 1,实例 2,实例 3。

#################################################
######### destinations ############# 
#################################################
canal.destinations = example

3.3 修改 instance.properties

我们只读取一个 MySQL 数据,所以只有一个实例,这个实例的配置文件在conf/example 目录下

$ pwd
/opt/module/canal/conf/example
$ vim instance.properties

1) 配置 MySQL 服务器地址

#################################################
## mysql serverId , v1.0.26+ will autoGen 
## slaveId不要与my.cnf中server-id和其他节点重复
canal.instance.mysql.slaveId=20
# enable gtid use true/false
canal.instance.gtidon=false
# position info
canal.instance.master.address=127.0.0.1:3306

2)配置连接 MySQL 的用户名和密码,默认就是我们前面授权的 canal

# username/password
canal.instance.dbUsername=canal
canal.instance.dbPassword=canal
canal.instance.connectionCharset = UTF-8
canal.instance.defaultDatabaseName =test
# enable druid Decrypt database password
canal.instance.enableDruid=false

4. 实时监控测试

4.1 TCP 模式测试

4.1.1 创建 maven 项目
4.1.2 在 gmall-canal 模块中配置 pom.xml
<dependencies>
  <dependency>
    <groupId>com.alibaba.otter</groupId>
    <artifactId>canal.client</artifactId>
    <version>1.1.2</version>
  </dependency>
  <dependency>
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka-clients</artifactId>
    <version>2.4.1</version>
  </dependency>
</dependencies>
4.1.3 通用监视类 –CanalClient

1)Canal 封装的数据结构

2)在项目模块下创建 com.example.app 包,并在包下创建 CanalClient(java 代码)

import com.alibaba.fastjson.JSONObject;
import com.alibaba.otter.canal.client.CanalConnector;
import com.alibaba.otter.canal.client.CanalConnectors;
import com.alibaba.otter.canal.protocol.CanalEntry;
import com.alibaba.otter.canal.protocol.Message;
import com.google.protobuf.ByteString;
import com.google.protobuf.InvalidProtocolBufferException;
import java.net.InetSocketAddress;
import java.util.List;
public class CanalClient {
    public static void main(String[] args) throws InterruptedException, InvalidProtocolBufferException {
        //TODO 获取连接
        CanalConnector canalConnector = CanalConnectors.newSingleConnector(new InetSocketAddress("192.168.1.1", 11111), "example", "", "");
        while (true) {
            //连接
            canalConnector.connect();
            //订阅数据库
            canalConnector.subscribe("gmall-2021.*");
            //获取数据
            Message message = canalConnector.get(100);
            //获取Entry集合
            List<CanalEntry.Entry> entries = message.getEntries();
            //判断集合是否为空,如果为空,则等待一会继续拉取数据
            if (entries.size() <= 0) {
                System.out.println("当次抓取没有数据,休息一会。。。。。。");
                Thread.sleep(1000);
            } else {
                //遍历entries,单条解析
                for (CanalEntry.Entry entry : entries) {
                    //1.获取表名
                    String tableName = entry.getHeader().getTableName();
                    //2.获取类型
                    CanalEntry.EntryType entryType = entry.getEntryType();
                    //3.获取序列化后的数据
                    ByteString storeValue = entry.getStoreValue();
                    //4.判断当前entryType类型是否为ROWDATA
                    if (CanalEntry.EntryType.ROWDATA.equals(entryType)) {
                        //5.反序列化数据
                        CanalEntry.RowChange rowChange = CanalEntry.RowChange.parseFrom(storeValue);
                        //6.获取当前事件的操作类型
                        CanalEntry.EventType eventType = rowChange.getEventType();
                        //7.获取数据集
                        List<CanalEntry.RowData> rowDataList = rowChange.getRowDatasList();
                        //8.遍历rowDataList,并打印数据集
                        for (CanalEntry.RowData rowData : rowDataList) {
                            JSONObject beforeData = new JSONObject();
                            List<CanalEntry.Column> beforeColumnsList = rowData.getBeforeColumnsList();
                            for (CanalEntry.Column column : beforeColumnsList) {
                                beforeData.put(column.getName(), column.getValue());
                            }
                            JSONObject afterData = new JSONObject();
                            List<CanalEntry.Column> afterColumnsList = rowData.getAfterColumnsList();
                            for (CanalEntry.Column column : afterColumnsList) {
                                afterData.put(column.getName(), column.getValue());
                            }
                            //数据打印
                            System.out.println("Table:" + tableName +
                                    ",EventType:" + eventType +
                                    ",Before:" + beforeData +
                                    ",After:" + afterData);
                        }
                    } else {
                        System.out.println("当前操作类型为:" + entryType);
                    }
                }
            }
        }
    }
}

4.2 Kafka 模式测试

1)修改 canal.properties 中 canal 的输出 model,默认 tcp,改为输出到 kafka

canal.serverMode = kafka

2)修改 Kafka 集群的地址

canal.mq.servers = 192.168.1.1:9092,192.168.1.2:9092,192.168.1.3:9092

3)修改 instance.properties 输出到 Kafka 的主题以及分区数

# mq config
canal.mq.topic=canal_test
canal.mq.partitionsNum=1
# hash partition config
#canal.mq.partition=0
#canal.mq.partitionHash=mytest.person:id,mytest.role:id

注意:默认还是输出到指定 Kafka 主题的一个 kafka 分区,因为多个分区并行可能会打乱 binlog 的顺序,如果要提高并行度,首先设置 kafka的分区数 >1, 然后设置canal.mq.partitionHash 属性。

4)启动 canal

$ cd /opt/module/canal/
$ bin/startup.sh

5)看到 CanalLauncher 你表示启动成功,同时会创建 canal_test 主题

$ jps
2269 Jps
2253 CanalLauncher

6)启动 Kafka 消费客户端测试,查看消费情况

$ bin/kafka-console-consumer.sh --bootstrap-server 192.168.1.1:9092 --topic canal_test

7)向 MySQL 中插入数据后查看消费者控制台

插入数据
INSERT INTO user_info VALUES('1001','zhangsan','male'),('1002','lisi','female');
Kafka 消费者控制台
{"data":[{"id":"1001","name":"zhangsan","sex":"male"},{"id":"1002","name":"lisi","sex":"female"}],"database":"gmall-2021","es":1639360729000,"id":1,"isDdl":false,"mysqlType":{"id":"varchar(255)","name":"varchar(255)","sex":"varchar(255)"},"old":n
ull,"sql":"","sqlType":{"id":12,"name":12,"sex":12},"table":"user_info","ts":1639361038454,"type":"INSERT"}

我的博客即将同步至腾讯云开发者社区,邀请大家一同入驻:https://cloud.tencent.com/developer/support-plan?invite_code=rrez71s8jyqy

相关文章
|
3月前
|
存储 SQL 分布式计算
大数据-162 Apache Kylin 全量增量Cube的构建 Segment 超详细记录 多图
大数据-162 Apache Kylin 全量增量Cube的构建 Segment 超详细记录 多图
76 3
|
14天前
|
存储 人工智能 数据管理
|
8天前
|
存储 人工智能 数据管理
媒体声音|专访阿里云数据库周文超博士:AI就绪的智能数据平台设计思路
在生成式AI的浪潮中,数据的重要性日益凸显。大模型在实际业务场景的落地过程中,必须有海量数据的支撑:经过训练、推理和分析等一系列复杂的数据处理过程,才能最终产生业务价值。事实上,大模型本身就是数据处理后的产物,以数据驱动的决策与创新需要通过更智能的平台解决数据多模处理、实时分析等问题,这正是以阿里云为代表的企业推动 “Data+AI”融合战略的核心动因。
|
18天前
|
安全 关系型数据库 MySQL
MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!
《MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!》介绍了MySQL中的三种关键日志:二进制日志(Binary Log)、重做日志(Redo Log)和撤销日志(Undo Log)。这些日志确保了数据库的ACID特性,即原子性、一致性、隔离性和持久性。Redo Log记录数据页的物理修改,保证事务持久性;Undo Log记录事务的逆操作,支持回滚和多版本并发控制(MVCC)。文章还详细对比了InnoDB和MyISAM存储引擎在事务支持、锁定机制、并发性等方面的差异,强调了InnoDB在高并发和事务处理中的优势。通过这些机制,MySQL能够在事务执行、崩溃和恢复过程中保持
47 3
|
1月前
|
监控 测试技术 开发者
一行代码改进:Logtail的多行日志采集性能提升7倍的奥秘
一个有趣的现象引起了作者的注意:当启用行首正则表达式处理多行日志时,采集性能出现下降。究竟是什么因素导致了这种现象?本文将探索Logtail多行日志采集性能提升的秘密。
127 23
|
3月前
|
Java 大数据 数据库连接
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
47 2
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
|
3月前
|
算法 大数据 数据库
云计算与大数据平台的数据库迁移与同步
本文详细介绍了云计算与大数据平台的数据库迁移与同步的核心概念、算法原理、具体操作步骤、数学模型公式、代码实例及未来发展趋势与挑战。涵盖全量与增量迁移、一致性与异步复制等内容,旨在帮助读者全面了解并应对相关技术挑战。
67 3
|
3月前
|
存储 消息中间件 大数据
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
大数据-69 Kafka 高级特性 物理存储 实机查看分析 日志存储一篇详解
59 4
|
3月前
|
存储 Prometheus NoSQL
大数据-44 Redis 慢查询日志 监视器 慢查询测试学习
大数据-44 Redis 慢查询日志 监视器 慢查询测试学习
39 3
|
3月前
|
存储 消息中间件 大数据
大数据-70 Kafka 高级特性 物理存储 日志存储 日志清理: 日志删除与日志压缩
大数据-70 Kafka 高级特性 物理存储 日志存储 日志清理: 日志删除与日志压缩
58 1