Linux进程间通信【匿名管道】

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: Linux进程间通信【匿名管道】

🌇前言

进程间通信简称为 IPC(Interprocess communication),是两个不同进程间进行任务协同的必要基础。进行通信时,首先需要确保不同进程之间构建联系,其次再根据不同的使用场景选择不同的通信解决方案,本文主要介绍的通信解决方案为 匿名管道


🏙️正文

1、进程间通信相关概念

在正式学习 匿名管道 之前,需要简单了解一下通信的相关概念

1.1、目的

进程间通信主要有以下四个目的:

  1. 数据传输 :不同进程间进行数据传输,比如此时我写的博客数据正在源源不断的上传至 CSDN 服务器中
  2. 资源共享多个进程之间需要共享资源,假设每个用户都是独立的进程,那么整个 C 站就是一个被共享的资源,用户之前可以共享其技术资源
  3. 事件通知:一个进程向其他进程发送消息,通知处理相关事宜,比如 子进程终止时,需要通知父进程,回收其资源
  4. 进程控制:有些进程需要起到 管理者 的作用,于是需要与被管理进程之间构建通信关系,进程任务下达及进程控制,并对进程状态进行实时监视

其实进程间通信的最终目的就是 打破各个独立进程之前的壁垒,进行任务协同

就好比 大航海时期 的冒险家们,克服困难、勇于开拓,打破了不同大陆间的隔离状态,最终将世界连为一个 “整体”,人类文明迎来了高速发展时期

  • 让世界连成一整体,开始了全球化发展
  • 有利于讲文明传播到世界各地,促进了世界各地的交流
  • 帮助不发达的地方引进新的文明成果

进程间具有独立性,这是原则

让进程间可以更好的协同工作,这是目的

因此进程间通信的本质就是 让不同的进程看到同一份 “资源”

  • 其中的 资源OS 直接或间接提供

无论后续的哪种进程间通信的解决方案,都要解决以下两个问题:

  1. 想办法让不同的进程看到同一份资源
  2. 让其中一方写入,另一方读取,完成通信;至于通信的目的及后续工作,需要结合具体场景分析

1.2、发展

进程间通信的发展可以简单概况为以下三个时期:

  • 管道时期(古老的通信方式)
  • System V 标准时期(本地化进程间通信)
  • POSIX 标准时期(网络中进程间通信)

管道可以说是十分古老且简单了,后来新出的 System V 标准丰富了进程间通信的方式,但奈何无法满足网络中的进程间通信需求,于是诞生了更好的 POSIX 标准

管道适合深入学习,探究进程间通信时的原理及执行流程

System V 标准如今比较少用了,但其通信速度极快的共享内存还是值得深入学习的

POSIXUnix 系统的一个设计标准,很多类 Unix 系统也在支持兼容这个标准,如 Linux , POSIX 标准具有跨平台性,就连 Windows 也对其进行了支持,后续学习 同步与互斥 时,所使用的信号量等都是出自 POSIX 标准,这是进程间通信的学习重点

POSIX 标准支持网络中通信,比如 套接字(socket) 就在此标准中

1.3、分类

根据不同发展时期的标准,可以将进程间通信的解决方案划分为以下几种:

管道:

  • 匿名管道
  • 命名管道

System V 标准:

  • System V 消息队列
  • System V 共享内存
  • System V 信号量

POSIX 标准:

  • POSIX 消息队列
  • POSIX 共享内存
  • POSIX 信号量
  • POSIX 互斥量(互斥锁)
  • POSIX 条件变量
  • POSIX 读写锁

显然,随着时代进步,技术也在不断迭代发展,新标准在替代旧标准时,也必然新增时代特色需求,比如 上世纪末的网络;如今人工智能的迅猛发展也给传统从业者敲响了警钟,只有在自我发展中寻求变革,才能 hold 住新时代发展的浪潮


2、什么是管道?

管道是 Unix 系统 IPC (进程间通信)中 最古老 的方式,其历史最早可追溯至 1964年10月11日

出自 《UNIX PIPES 管道原稿》 — 陈皓

在命令行中输入 | 即可使用管道

创建两个睡眠时间较长的 后台进程

sleep 10000 | sleep 20000 &


注:& 表示令当前进程变为后台进程


可以看出,两个 sleep 进程的 PPID 一致,同时 PID 连续,因此这两个进程是兄弟关系

管道分为 匿名管道命名管道,两者绝大部分原理、特点都一致,本文主要介绍 匿名管道,同时适用于 命名管道 的知识点统一称为 管道

Linux 中一切皆文件,所以管道本质上就是一个文件


3、管道的工作原理

管道的工作原理其实很简单:打开一个文件,让两个进程分别享有读端与写端 fd,对文件进行操作即可

命名管道和匿名管道基本原理都差不多,但命名管道更强大,能实现两个毫不相干的进程间通信

具体在 OS 中的体现:在文件的结构体 files_struct 中,存在一个特殊的成员 struct file *fd_array[],这是一个指针数组,其中存储的是指向不同文件的指针

//Linux内核源码(部分)
struct files_struct {
  /*
   * read mostly part
   */
  atomic_t count;
  struct fdtable __rcu *fdt;
  struct fdtable fdtab;
  /*
   * written part on a separate cache line in SMP
   */
  spinlock_t file_lock ____cacheline_aligned_in_smp;
  int next_fd;
  unsigned long close_on_exec_init[1];
  unsigned long open_fds_init[1];
  struct file __rcu * fd_array[NR_OPEN_DEFAULT];  //文件指针数组
};


此时父进程可以打开匿名管道文件,fork 子进程后,子进程继承原有的 文件系统 关系,与父进程共享同一份文件资源,然后父子进程分别关闭 读端与写端,实现匿名管道的单向关系,即可正常进行通信

具体流程:

  1. 父进程创建匿名管道,同时以读、写的方式打开匿名管道,此时会分配两个 fd
  2. fork 创建子进程,子进程拥有自己的进程系统信息,同时会继承原父进程中的文件系统信息,此时子进程和父进程可以看到同一份资源:匿名管道 pipe
  3. 因为子进程继承了原有关系,因此此时父子进程对于 pipe 都有读写权限,需要确定数据流向,关闭不必要的 fd,比如父进程写、子进程读,或者父进程读、子进程写都可以

注意:

  • fork 创建子进程后,子进程会继承原父进程中的文件系统信息,这也就是父子进程都会同时向屏幕打印信息的原理,因为此时它们操作的是同一个文件!
  • 父进程需要以读写的方式打开匿名管道 pipe,这样子进程在继承时,才不会发生权限丢失
  • 创建出的匿名管道文件 pipe 虽然属于文件系统,但它是一个特殊文件,一个由 OS 提供的纯纯的内存文件,不需要将数据冲刷至磁盘中,只需要承担进程间通信任务即可
  • 管道是一种半双工、单流向的通信方式,因为 pipe 只有一个缓冲区,所以这种方式才被叫做 管道通信

4、匿名管道的创建与使用

4.1、pipe 函数

匿名管道是通过 pipe 函数创建的,其函数原型如下所示

#include <unistd.h>
int pipe(int pipefd[2]);


关于 pipefd 数组

数组元素 含义
pipefd[0] 表示 匿名管道的 读端
pipefd[1] 表示 匿名管道的 写端

巧记:

  • pipefd[0] -> 0 -> 嘴巴 -> 读书 -> 读端
  • pipefd[1] -> 1 -> 钢笔 -> 写字 -> 写端

关于返回值:创建匿名管道成功,返回 0,失败返回 -1,并设置错误码

实际在使用此函数时,需要先创建好大小为 2pipefd 数组,然后将其传入函数,成功创建匿名管道后,pipefd 数组中存储的就是 匿名管道的读端和写端 fd

4.2、实例代码演示

下面通过一个简单的程序,演示 匿名管道函数 pipe 的使用

使用匿名管道步骤

  • 创建匿名管道
  • 创建子进程
  • 关闭不需要的 fd
  • 开始通信
#include <iostream>
#include <cassert>
#include <cstdlib>
#include <cstring>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
using namespace std;
int main()
{
    // 1、创建匿名管道
    int pipefd[2]; // 数组
    int ret = pipe(pipefd);
    assert(ret == 0);
    (void)ret; // 防止 release 模式中报警告
    // 2、创建子进程
    pid_t id = fork();
    if (id == 0)
    {
        // 子进程内
        close(pipefd[1]); // 3、子进程关闭写端
        // 4、开始通信
        char buff[64]; // 缓冲区
        while (true)
        {
            int n = read(pipefd[0], buff, sizeof(buff) - 1);    //注意预留一个位置存储 '\0'
            buff[n] = '\0';
            if (n >= 5 && n < 64)
            {
                // 读取到了信息
                cout << "子进程成功读取到信息:" << buff << endl;
            }
            else
            {
                // 未读取到信息
                if (n == 0)
                    cout << "子进程没有读取到信息,通信结束!" << endl;
                // 读取异常(消息过短)
                else
                    cout << "子进程读取数据量为:" << n << " 消息过短,通信结束!" << endl;
                break;
            }
        }
        close(pipefd[0]); // 关闭剩下的读端
        exit(0);          // 子进程退出
    }
    // 父进程内
    close(pipefd[0]); // 3、父进程关闭读端
    char buff[64];
    // 4、开始通信
    srand((size_t)time(NULL)); // 随机数种子
    while (true)
    {
        int n = rand() % 26;
        for (int i = 0; i < n; i++)
            buff[i] = (rand() % 26) + 'A'; // 形成随机消息
        buff[n] = '\0';                    // 结束标志
        cout << "=============================" << endl;
        cout << "父进程想对子进程说: " << buff << endl;
        write(pipefd[1], buff, strlen(buff)); // 写入数据
        if (n < 5)
            break; // 消息过短时,不写入
        sleep(1);
    }
    close(pipefd[1]); // 关闭剩下的写端
    // 父进程等待子进程结束
    int status = 0;
    waitpid(id, &status, 0);
    // 通过 status 判断子进程运行情况
    if ((status & 0x7F))
    {
        printf("子进程异常退出,core dump: %d   退出信号:%d\n", (status >> 7) & 1, (status & 0x7F));
    }
    else
    {
        printf("子进程正常退出,退出码:%d\n", (status >> 8) & 0xFF);
    }
    return 0;
}


站在 文件描述符 的角度理解上述代码:

站在 内核(管道本质) 的角度理解上述代码:

所以,看待 管道 ,就如同看待 文件 一样!管道 的使用和 文件 一致,迎合 Linux一切皆文件思想

4.3、管道读写规则

管道是一种 半双工、单向流 的通信方式,因此在成功创建匿名管道后,需要两个待通信的进程都能获得同一个 pipefd 数组

这就是匿名管道比较特殊的地方了:匿名管道只支持具有血缘关系的进程通信,如 父子进程、兄弟进程等,因为只有 继承 了,才能共享到 同一个 pipefd 数组

当通信双方都获得 pipefd 数组后,需要根据情况关闭不需要的 fd,确保 单流向 的原则

注:命名管道可以支持不具有血缘关系进程间通信

关于匿名管道还有一个函数:pipe2 (了解),比 pipe 函数多一个参数2 flags,可以使匿名管道在发生特殊情况时,作出不同的动作,当 flags0 时,pipe2 等价于 pipe

管道的读写规则:

PIPE_BUF 为管道大小,Linux 中为 4096 字节

  • 当要写入的数据量不大于 PIPE_BUF 时,Linux 将保证写入的原子性
  • 当要写入的数据量大于 PIPE_BUF 时,Linux 将不再保证写入的原子性

原子性:不存在中间状态,确保数据的安全性


5、管道的特点

管道 主要有以下几个特点:

1.单向通信,管道是半双工的一种特殊情况

  • 管道就像单行道,只允许数据单向流通,即通知,如果想要实现两个进程间相互进行通信,需要创建两条管道,管道1:父进程写,子进程读;管道2:子进程写,父进程读


2.管道的本质是文件,因为 fd 的生命周期随进程而终止,所以管道的生命周期也是随着进程而结束的

  • 当进程终止运行时,管道资源会被 OS 回收

3.匿名管道常用来进行具有 “血缘” 关系的进程,进行进程间通信(常用于父子进程间通信)

  • pipe 打开管道,并不清楚管道的名字等信息,这种管道称为 匿名管道,因此 匿名管道 只能用于有血缘关系的进程 IPC,因为 需要通过 fork 继承匿名管道信息

4.在管道中,写入读取 的次数并不是严格匹配的,此时读写次数没有强相关关系,管道是面向字节流读写的

  • 面向字节流读写又称为 流式服务:数据没有明确的分割,不分一定的报文段;与之相对应的是 数据报服务:数据有明确的分割,拿数据按报文段拿
  • 不论写端写入了多少数据,只要写端停止写入,读端都可以将数据读取

5.具有一定的协同能力,让 读端写端 能够按照一定的步骤进行通信(自带同步机制)

  • 当读端进行从管道中读取数据时,如果没有数据,则会阻塞,等待写端写入数据;如果读端正在读取,那么写端将会阻塞等待读端,因此 管道自带 同步与互斥 机制

可以简单总结为:

  1. 管道是半双工通信
  2. 管道生命随进程而终止
  3. 匿名管道只支持具有血缘关系的进程间通信,而命名管道无所谓
  4. 管道提供的是流式数据传输服务
  5. 管道自带 同步与互斥 机制

6、管道的四种特殊场景

管道还存在四种特殊场景:管道为空、管道为满、写端关闭、读端关闭,四种场景对应四种不同的特殊情况,都可以通过代码进行演示

注意: 当前大部分场景中,子进程为读端,父进程为写端

6.1、场景一

父进程不写,此时管道为空,子进程尝试读取

伪代码段
// 父进程不写(空),子进程读
//子进程(尝试读取)
int cnt = 1;
while (true)
{
    char ch;
    read(pipefd[0], &ch, 1);
    cout << "已读取 " << cnt++ << " 字节的数据" << endl;
}
//父进程(不写)
while (true) {}


结果:因为管道为空,因此子进程无法读取,即 读端阻塞

只有当写端写入数据后,读端才能正常读取

6.2、场景二

父进程不断写入,直到管道写满,子进程不读取

伪代码段
//父进程写(满),子进程不读
//子进程(不读)
while (true) {}
//父进程(不断写入)
int cnt = 1; // 计数器
while (true)
{
    char ch = 'x';
    write(pipefd[1], &ch, 1); // 写入数据
    cout << "已写入 " << cnt++ << " 字节的数据" << endl;
}


结果:在一段时间后,管道被写满,写端无法写入数据,进入阻塞状态

只有当读端尝试将管道中的数据读走一部分后,写端才能继续写入

形象化理解

管道为空:垃圾桶为空时,你不会去倒垃圾(读端阻塞),因为没有垃圾,需要等有垃圾了(写入数据)才去倒

管道为满:垃圾桶中的垃圾装满时,无法再继续扔垃圾(写端阻塞),需要等把垃圾倒了(读取数据),才能继续扔垃圾

6.3、场景三

在通信的过程中,关闭写端,只保留读端

伪代码段
//写端写入一段信息后,就关闭
//子进程正常读取,并且对读取到的数据量进行判断
char buff[64];
while(true)
{
    int n = read(pipefd[0], buff, sizeof(buff) - 1);
    buff[n] = '\0';
    if(n == 0)
        cout << "写端已关闭,读取数据量为: " << n << " 字节" << endl;
    else
        cout << "成功读取到信息: " << buff << endl;
    sleep(1);
}
//父进程只写入一次数据,然后关闭写端
char buff[] = "Hello pipe!";
write(pipefd[1], buff, strlen(buff)); // 写入数据
close(pipefd[1]); // 关闭剩下的写端


结果:关闭写端后,读端会将匿名管道中的数据读取完后,再读,会读到 0,表示已读到文件末尾

如何理解?

  • 因为管道是单流向通信,写端都关闭了,证明不会再有数据写入,因此当读端把剩余数据都读取后,每次都是读取 0 字节数据,表明此时已经读到了结尾,读端也可以结束读取了

6.4、场景四

在通信过程中,关闭读端,只保留写端

注:这里将角色变换一下,方便父进程捕捉到子进程的退出信号

切换:父进程 -> 读端,子进程 -> 写端

伪代码段
//读端读取一段时间后,就关闭
//子进程不断写入
while (true)
{
    char buff[] = "Hello pipe!";
    write(pipefd[1], buff, strlen(buff)); // 写入数据
    sleep(1);
}
//父进程在读取五次信息后,就终止读取,关闭读端
char buff[64];
int cnt = 1;
while (true)
{
    int n = read(pipefd[0], buff, sizeof(buff) - 1);
    buff[n] = '\0';
    if (n == 0)
        cout << "写端已关闭,读取数据量为: " << n << " 字节" << endl;
    else
        cout << "成功读取到信息: " << buff << endl;
    // 读取五次后,关闭读端
    if (cnt++ == 5)
        break;
}
close(pipefd[0]);
// 父进程等待子进程结束
int status = 0;
waitpid(id, &status, 0);
printf("子进程异常退出,core dump: %d   退出信号:%d\n", (status >> 7) & 1, (status & 0x7F));


结果:OS 不允许任何浪费资源的行为存在,如果关闭了读端,那么证明写端写了也没有,即没有存在的意义,于是 OS 会发出 13 号信号,终止写端进程

通过指令查看信号表

kill -l


以上就是管道的四种特殊场景,不仅适用于匿名管道,同时也适用于命名管道


7、匿名管道的大小

既然管道能被写满,那么管道的大小究竟是多少?

一、通过 man 手册查询相关信息

man 7 pipe


接着输入 /pipe capacity 即可搜索出管道的大小

文档解释:在 Linux 2.6.11 之前,管道大小为一个系统页的大小(比如在 i386 平台中,管道大小为 4096 字节,即 4kb),从 Linux 2.6.11 开始,管道大小的容量统一为 65536 字节,即 64kb

因为在 Linux 2.6.11 版本中,对管道进行更新,采取了新的解决方案

原文链接:Circular pipes

可以通过指令查看当前系统的内核版本号

uname -a


二、通过指令查看当前系统资源的限制情况

ulimit -a


当前系统中,限制单条管道大小为 512 * 8 = 4096 字节

可以前往 /usr/src/kernels/内核版本信息/include/linux/pipe_fs_i.h 这个文件中,查看当前系统的 管道条目数,比如我当前的系统中,管道条目数为 16,因此管道的大小上限为 4096 * 16 = 65536 字节

此时可以猜测:新的管道解决方案中,为所有的管道分配了一块定额空间,可用的 16 条管道中,可以根据自己的需要,获取大小,极大提高了效率

三、通过程序验证

这个前面就已经验证过了,不断往管道中写数据,直到管道被写满

每次写入 1 字节的数据,可以看到最终写了 65536 字节的数据

总之,从 Linux 2.6.11 版本开始,管道大小上限为 64kb


8、匿名管道实操-进程控制

匿名管道作为 IPC 的其中一种解决方案,那么肯定有它的实战价值

场景:父进程创建了一批子进程,并通过多条匿名管道与它们链接,父进程选择某个子进程,并通过匿名管道与子进程通信,并下达指定的任务让其执行

8.1、逻辑设计

首先创建一批子进程及匿名管道 -> 子进程(读端)阻塞,等待写端写入数据 -> 选择相应的进程,并对其写入任务编号(数据)-> 子进程拿到数据后,执行相应任务

8.2、具体功能实现

下面来看看具体功能实现(部分细节可能未展示,详细实现可以看源码)

1、创建一批进程及管道

创建一批进程及管道

  • 首先需要先创建一个包含进程信息的类,最主要的就是子进程的写端 fd,这样父进程才能通过此 fd 进行数据写入
  • 循环创建管道、子进程,进行相应的管道链接操作,然后子进程进入任务等待状态,父进程将创建好的子进程信息注册
  • 假设子进程获取了任务代号,那么应该根据任务代号,去执行相应的任务,否则阻塞等待

注意: 因为是创建子进程,所以存在关系重复继承的情况,此时应该统计当前子进程的写端 fd,在创建下一个进程时,关闭无关的 fd

具体体现为:每次都把 写端 fd 存储起来,在确定关系前 “清理” 干净

关于上述操作的危害,需要在编写完进程等待函数后,才能演示其作用

#define NAME_SIZE 64
// 封装一个包含各种必备信息的类
class ProcInfo
{
public:
    ProcInfo(pid_t id = pid_t(), int fd = int())
        : _childID(id), _wfd(fd), _num(++_count)
    {
        char buff[NAME_SIZE];
        snprintf(buff, sizeof buff, "Process %d [%d:%d]", _num, _childID, _wfd);
        _name = string(buff);
    }
    ~ProcInfo()
    {
        _childID = _wfd = 0;
    }
    pid_t _childID;  // pid
    int _wfd;        // 写端 fd
    string _name;    // 进程名
    int _num;   //编号
    static int _count; // 计数
};
int ProcInfo::_count = 0; // 静态成员初始化
void CreateProcessAndPipe(vector<ProcInfo> &PP, int ppNum = 3)
{
    vector<int> fds;    //存储继承中不需要的写端 fd
    for(int i = 0; i < ppNum; i++)
    {
        //首先创建管道
        int pipefd[2];
        int ret = pipe(pipefd);
        assert(ret != -1);
        (void)ret;
        //然后创建子进程
        int id = fork();
        assert(id != -1);
        (void)id;
        if(id == 0)
        {
            //子进程内
            //需要先关闭之前子进程遗留的写端fd
            for(auto e : fds)
                close(e);
            close(pipefd[1]);   //子进程关闭写端
            waitCommand(pipefd[0]);  //子进程等待命令
            close(pipefd[0]);
            exit(0);
        }
        //父进程内
        close(pipefd[0]);   //父进程关闭读端
        PP.push_back(ProcInfo(id, pipefd[1]));
        fds.push_back(pipefd[1]);
    }
}


2、任务类创建及任务等待

子进程在创建完成后,需要进入一个 等待阶段 -> 读端阻塞,同时当子进程读取到相应的 指令 时,需要执行相应任务,这里将封装成了一个类,并通过对象调用函数

ctrlProc.cc

void waitCommand(int rfd)
{
    while(true)
    {
        //读端尝试读取信息
        int command = 0; 
        int n = read(rfd, &command, sizeof(command));
        if(n != 0)
        {
            TaskPools().Execute(command);
        }
        else
        {
            cout << "当前子进程读取任务失败,已退出!" << endl;
            break;
        }
    }
}


Task.hpp

#pragma once
#include <iostream>
#include <vector>
#include <unistd.h>
using namespace std;
void PrintLOG()
{
  cout << "PID: " << getpid() << " 正在执行打印日志的任务…" << endl;
}
void InsertSQL()
{
  cout << "PID: " << getpid() << " 正在执行数据库插入的任务…" << endl;
}
void NetRequst()
{
  cout << "PID: " << getpid() << " 正在执行网络请求的任务…" << endl;
}
typedef void(*func_t)();
//任务池
class TaskPools
{
public:
    TaskPools()
    {
      //装载任务
        _vft.push_back(PrintLOG);
        _vft.push_back(InsertSQL);
        _vft.push_back(NetRequst);
    }
    ~TaskPools()
    {}
    void Execute(int num)
    {
        //根据编号,执行任务
        if(num < 0 || num > _vft.size())
            cout << "没有这个任务" << endl;
        else
            _vft[num]();
    }
private:
    vector<func_t> _vft;    //可用任务表
}; 


3、子进程控制

当所有子进程都完成注册后(统计至 PP),可以让用户输入下标选择程序、输入任务编号选择任务、或者输入程序退出

注意:因为当前子进程编号从 1 开始,所以在进行下标访问时,需要 -1 避免越界

void showTask()
{
    cout << "**************************" << endl;
    cout << "* 0.日志打印  1.数据插入 *" << endl;
    cout << "* 2.网络请求  3.退出程序 *" << endl;
    cout << "**************************" << endl;
}
void CtrlProcess(vector<ProcInfo> &PP)
{
    while (true)
    {
        // 展示当前可用的进程
        int index = 0;
        do
        {
            cout << "当前可选择进程:";
            for (int i = 1; i <= PP.size(); i++)
                cout << i << " ";
            cout << endl;
            cout << "请选择进程: ";
            cin >> index;
        } while (index < 1 || index > PP.size());
        int taskNum = 0;
        do
        {
            showTask(); // 展示可选任务
            cout << "请选择任务: ";
            cin >> taskNum;
        } while (taskNum < 0 || taskNum > 3);
        // 分配任务
        if(taskNum == 3)
            break;
        cout << "已选择: " << PP[index - 1]._num << " 号进程 | " << PP[index - 1]._name << endl;
        write(PP[index - 1]._wfd, &taskNum, sizeof(taskNum));
        sleep(1);   //执行完任务后,睡一会
    }
}


此时已经可以把任务跑起来了

现在就是万事俱备,只欠回收

4、子进程回收

子进程回收十分简单,因为已经在 PP 中存储了各个子进程的 PID,只需要遍历等待回收即可

void WaitProcess(vector<ProcInfo> &PP)
{
    // 遍历回收就好了
    for (auto e : PP)
    {
        close(e._wfd);  //关闭写端,读端读取到 0 自动结束阻塞
        int status = 0;
        waitpid(e._childID, &status, 0);
        // 通过 status 判断子进程运行情况
        if ((status & 0x7F))
        {
            printf("子进程异常退出,core dump: %d   退出信号:%d\n", (status >> 7) & 1, (status & 0x7F));
        }
        else
        {
            printf("子进程 %s 正常退出,退出码:%d\n", e._name.c_str(), (status >> 8) & 0xFF);
        }
    }
    cout << "所有子进程都已回收" << endl;
}


此时可以验证一下之前的 存在多个写端的问题

首先正常跑(有解决方案的前提下)

然后删除原来的解决方案:vector fds

所以 关闭不必要的 fd 还是很重要的,尤其是在这种涉及 继承 的场景中

8.3、效果演示

下面通过一个动图看看整个程序的运行情况

8.4、注意事项

总体来说,在使用这个小程序时,以下关键点还是值得多注意的

  • 注册子进程信息时,存储的是 写端 fd,目的是为了通过此 fd 向对应的子进程写数据,即使用不同的匿名管道
  • 创建管道后,需要关闭父、子进程中不必要的 fd
  • 需要特别注意父进程写端 fd 被多次继承的问题,避免因写端没有关干净,而导致读端持续阻塞
  • 关闭读端对应的写端后,读端会读到 0,可以借助此特性结束子进程的运行
  • 在选择进程 / 任务 时,要做好越界检查
  • 等待子进程退出时,需要先关闭写端,子进程才会退出,然后才能正常等待

8.5、完整源码

整个程序的完成源码如下所示:

ctrlProc.cc

#include <iostream>
#include <vector>
#include <string>
#include <cstdlib>
#include <cstring>
#include <cassert>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include "Task.hpp" //任务所需头文件
using namespace std;
#define NAME_SIZE 64
// 封装一个包含各种必备信息的类
class ProcInfo
{
public:
    ProcInfo(pid_t id = pid_t(), int fd = int())
        : _childID(id), _wfd(fd), _num(++_count)
    {
        char buff[NAME_SIZE];
        snprintf(buff, sizeof buff, "Process %d [%d:%d]", _num, _childID, _wfd);
        _name = string(buff);
    }
    ~ProcInfo()
    {
        _childID = _wfd = 0;
    }
    pid_t _childID;    // pid
    int _wfd;          // 写端 fd
    string _name;      // 进程名
    int _num;          // 编号
    static int _count; // 计数
};
int ProcInfo::_count = 0; // 静态成员初始化
void waitCommand(int rfd)
{
    while (true)
    {
        // 读端尝试读取信息
        int command = 0;
        int n = read(rfd, &command, sizeof(command));
        if (n != 0)
        {
            TaskPools().Execute(command);
        }
        else
        {
            cout << "当前子进程读取任务失败,已退出!" << endl;
            break;
        }
    }
}
void CreateProcessAndPipe(vector<ProcInfo> &PP, int ppNum = 3)
{
    vector<int> fds; // 存储继承中不需要的写端 fd
    for (int i = 0; i < ppNum; i++)
    {
        // 首先创建管道
        int pipefd[2];
        int ret = pipe(pipefd);
        assert(ret != -1);
        (void)ret;
        // 然后创建子进程
        int id = fork();
        assert(id != -1);
        (void)id;
        if (id == 0)
        {
            // 子进程内
            // 需要先关闭之前子进程遗留的写端fd
            for (auto e : fds)
                close(e);
            close(pipefd[1]);       // 子进程关闭写端
            waitCommand(pipefd[0]); // 子进程等待命令
            close(pipefd[0]);
            exit(0);
        }
        // 父进程内
        close(pipefd[0]); // 父进程关闭读端
        PP.push_back(ProcInfo(id, pipefd[1]));
        fds.push_back(pipefd[1]);
    }
}
void showTask()
{
    cout << "**************************" << endl;
    cout << "* 0.日志打印  1.数据插入 *" << endl;
    cout << "* 2.网络请求  3.退出程序 *" << endl;
    cout << "**************************" << endl;
}
void CtrlProcess(vector<ProcInfo> &PP)
{
    while (true)
    {
        // 展示当前可用的进程
        int index = 0;
        do
        {
            cout << "当前可选择进程:";
            for (int i = 1; i <= PP.size(); i++)
                cout << i << " ";
            cout << endl;
            cout << "请选择进程: ";
            cin >> index;
        } while (index < 1 || index > PP.size());
        int taskNum = 0;
        do
        {
            showTask(); // 展示可选任务
            cout << "请选择任务: ";
            cin >> taskNum;
        } while (taskNum < 0 || taskNum > 3);
        // 分配任务
        if (taskNum == 3)
            break;
        cout << "已选择: " << PP[index - 1]._num << " 号进程 | " << PP[index - 1]._name << endl;
        write(PP[index - 1]._wfd, &taskNum, sizeof(taskNum));
        sleep(1); // 执行完任务后,睡一会
    }
}
void WaitProcess(vector<ProcInfo> &PP)
{
    // 遍历回收就好了
    for (auto e : PP)
    {
        close(e._wfd);  //关闭写端,读端读取到 0 自动结束阻塞
        int status = 0;
        waitpid(e._childID, &status, 0);
        // 通过 status 判断子进程运行情况
        if ((status & 0x7F))
        {
            printf("子进程异常退出,core dump: %d   退出信号:%d\n", (status >> 7) & 1, (status & 0x7F));
        }
        else
        {
            printf("子进程 %s 正常退出,退出码:%d\n", e._name.c_str(), (status >> 8) & 0xFF);
        }
    }
    cout << "所有子进程都已回收" << endl;
}
int main()
{
    // 1、创建一批进程及匿名管道
    vector<ProcInfo> PP;
    CreateProcessAndPipe(PP);
    // 2、进程控制
    CtrlProcess(PP);
    // 3、进程回收
    WaitProcess(PP);
    return 0;
}


Task.hpp

#pragma once
#include <iostream>
#include <vector>
#include <unistd.h>
using namespace std;
void PrintLOG()
{
  cout << "PID: " << getpid() << " 正在执行打印日志的任务…" << endl;
}
void InsertSQL()
{
  cout << "PID: " << getpid() << " 正在执行数据库插入的任务…" << endl;
}
void NetRequst()
{
  cout << "PID: " << getpid() << " 正在执行网络请求的任务…" << endl;
}
typedef void(*func_t)();
//任务池
class TaskPools
{
public:
    TaskPools()
    {
        _vft.push_back(PrintLOG);
        _vft.push_back(InsertSQL);
        _vft.push_back(NetRequst);
    }
    ~TaskPools()
    {}
    void Execute(int num)
    {
        //根据编号,执行任务
        if(num < 0 || num > _vft.size())
            cout << "没有这个任务" << endl;
        else
            _vft[num]();
    }
private:
    vector<func_t> _vft;    //可用任务表
}; 


Makefile

ctrlProc:ctrlProc.cc
  g++ -o $@ $^ -std=c++11
.PHONY:clean
clean:
  rm -r ctrlProc



🌆总结

以上就是本次关于 Linux 进程间通信之匿名管道的全部内容了,在本文中,我们首先学习了什么是 IPC,以及 IPC 的发展历史及分类;然后从 管道 中的 匿名管道 入手,介绍了 管道 的各种特性、场景及 匿名管道 的使用;最后通过一个简单的 匿名管道 进程控制程序,将 匿名管道 IPC 这种方法的知识整体运用了一遍,第一次接触这种多进程程序,还是值得一写的



相关文章推荐


Linux基础IO【软硬链接与动静态库】


Linux基础IO【深入理解文件系统】


Linux【模拟实现C语言文件流】


Linux基础IO【重定向及缓冲区理解】


Linux基础IO【文件理解与操作】===============


Linux【模拟实现简易版bash】


Linux进程控制【进程程序替换】


Linux进程控制【创建、终止、等待】
相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
6天前
|
消息中间件 存储 网络协议
从零开始掌握进程间通信:管道、信号、消息队列、共享内存大揭秘
本文详细介绍了进程间通信(IPC)的六种主要方式:管道、信号、消息队列、共享内存、信号量和套接字。每种方式都有其特点和适用场景,如管道适用于父子进程间的通信,消息队列能传递结构化数据,共享内存提供高速数据交换,信号量用于同步控制,套接字支持跨网络通信。通过对比和分析,帮助读者理解并选择合适的IPC机制,以提高系统性能和可靠性。
60 14
|
1月前
|
算法 Linux 调度
深入理解Linux操作系统的进程管理
本文旨在探讨Linux操作系统中的进程管理机制,包括进程的创建、执行、调度和终止等环节。通过对Linux内核中相关模块的分析,揭示其高效的进程管理策略,为开发者提供优化程序性能和资源利用率的参考。
81 1
|
13天前
|
消息中间件 Linux
Linux:进程间通信(共享内存详细讲解以及小项目使用和相关指令、消息队列、信号量)
通过上述讲解和代码示例,您可以理解和实现Linux系统中的进程间通信机制,包括共享内存、消息队列和信号量。这些机制在实际开发中非常重要,能够提高系统的并发处理能力和数据通信效率。希望本文能为您的学习和开发提供实用的指导和帮助。
74 20
|
1月前
|
存储 监控 Linux
嵌入式Linux系统编程 — 5.3 times、clock函数获取进程时间
在嵌入式Linux系统编程中,`times`和 `clock`函数是获取进程时间的两个重要工具。`times`函数提供了更详细的进程和子进程时间信息,而 `clock`函数则提供了更简单的处理器时间获取方法。根据具体需求选择合适的函数,可以更有效地进行性能分析和资源管理。通过本文的介绍,希望能帮助您更好地理解和使用这两个函数,提高嵌入式系统编程的效率和效果。
105 13
|
1月前
|
SQL 运维 监控
南大通用GBase 8a MPP Cluster Linux端SQL进程监控工具
南大通用GBase 8a MPP Cluster Linux端SQL进程监控工具
|
1月前
|
运维 监控 Linux
Linux操作系统的守护进程与服务管理深度剖析####
本文作为一篇技术性文章,旨在深入探讨Linux操作系统中守护进程与服务管理的机制、工具及实践策略。不同于传统的摘要概述,本文将以“守护进程的生命周期”为核心线索,串联起Linux服务管理的各个方面,从守护进程的定义与特性出发,逐步深入到Systemd的工作原理、服务单元文件编写、服务状态管理以及故障排查技巧,为读者呈现一幅Linux服务管理的全景图。 ####
|
2月前
|
缓存 算法 Linux
Linux内核的心脏:深入理解进程调度器
本文探讨了Linux操作系统中至关重要的组成部分——进程调度器。通过分析其工作原理、调度算法以及在不同场景下的表现,揭示它是如何高效管理CPU资源,确保系统响应性和公平性的。本文旨在为读者提供一个清晰的视图,了解在多任务环境下,Linux是如何智能地分配处理器时间给各个进程的。
|
2月前
|
网络协议 Linux 虚拟化
如何在 Linux 系统中查看进程的详细信息?
如何在 Linux 系统中查看进程的详细信息?
274 1
|
2月前
|
Linux
如何在 Linux 系统中查看进程占用的内存?
如何在 Linux 系统中查看进程占用的内存?

热门文章

最新文章