class073 背包dp-01背包、有依赖的背包【算法】
code1 P1048 [NOIP2005 普及组] 采药
// 01背包(模版)
// 给定一个正数t,表示背包的容量
// 有m个货物,每个货物可以选择一次
// 每个货物有自己的体积costs[i]和价值values[i]
// 返回在不超过总容量的情况下,怎么挑选货物能达到价值最大
// 返回最大的价值
// 测试链接 : https://www.luogu.com.cn/problem/P1048
// 请同学们务必参考如下代码中关于输入、输出的处理
// 这是输入输出处理效率很高的写法
// 提交以下的所有代码,并把主类名改成"Main",可以直接通过
dp[i][j]:编号1…i的物品自由选择,容量不超过j的最大价值
①不要i号物品,dp[i-1][j]
②要i号物品,dp[i-1][j-cost[i]]+val[i],注意j-cost[i]不能是负数
二者取较大值
第0行:0
返回dp[n][t]
package class073; // 01背包(模版) // 给定一个正数t,表示背包的容量 // 有m个货物,每个货物可以选择一次 // 每个货物有自己的体积costs[i]和价值values[i] // 返回在不超过总容量的情况下,怎么挑选货物能达到价值最大 // 返回最大的价值 // 测试链接 : https://www.luogu.com.cn/problem/P1048 // 请同学们务必参考如下代码中关于输入、输出的处理 // 这是输入输出处理效率很高的写法 // 提交以下的所有代码,并把主类名改成"Main",可以直接通过 import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.io.StreamTokenizer; import java.util.Arrays; public class Code01_01Knapsack { public static int MAXM = 101; public static int MAXT = 1001; public static int[] cost = new int[MAXM]; public static int[] val = new int[MAXM]; public static int[] dp = new int[MAXT]; public static int t, n; public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StreamTokenizer in = new StreamTokenizer(br); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); while (in.nextToken() != StreamTokenizer.TT_EOF) { t = (int) in.nval; in.nextToken(); n = (int) in.nval; for (int i = 1; i <= n; i++) { in.nextToken(); cost[i] = (int) in.nval; in.nextToken(); val[i] = (int) in.nval; } out.println(compute2()); } out.flush(); out.close(); br.close(); } // 严格位置依赖的动态规划 // n个物品编号1~n,第i号物品的花费cost[i]、价值val[i] // cost、val数组是全局变量,已经把数据读入了 public static int compute1() { int[][] dp = new int[n + 1][t + 1]; for (int i = 1; i <= n; i++) { for (int j = 0; j <= t; j++) { // 不要i号物品 dp[i][j] = dp[i - 1][j]; if (j - cost[i] >= 0) { // 要i号物品 dp[i][j] = Math.max(dp[i][j], dp[i - 1][j - cost[i]] + val[i]); } } } return dp[n][t]; } // 空间压缩 public static int compute2() { Arrays.fill(dp, 0, t + 1, 0); for (int i = 1; i <= n; i++) { for (int j = t; j >= cost[i]; j--) { dp[j] = Math.max(dp[j], dp[j - cost[i]] + val[i]); } } return dp[t]; } }
code2 bytedance-006. 夏季特惠
// 夏季特惠
// 某公司游戏平台的夏季特惠开始了,你决定入手一些游戏
// 现在你一共有X元的预算,平台上所有的 n 个游戏均有折扣
// 标号为 i 的游戏的原价a_i元,现价只要b_i元
// 也就是说该游戏可以优惠 a_i - b_i,并且你购买该游戏能获得快乐值为w_i
// 由于优惠的存在,你可能做出一些冲动消费导致最终买游戏的总费用超过预算
// 只要满足 : 获得的总优惠金额不低于超过预算的总金额
// 那在心理上就不会觉得吃亏。
// 现在你希望在心理上不觉得吃亏的前提下,获得尽可能多的快乐值。
// 测试链接 : https://leetcode.cn/problems/tJau2o/
// 请同学们务必参考如下代码中关于输入、输出的处理
// 这是输入输出处理效率很高的写法
// 提交以下的所有代码,并把主类名改成"Main",可以直接通过
package class073; // 夏季特惠 // 某公司游戏平台的夏季特惠开始了,你决定入手一些游戏 // 现在你一共有X元的预算,平台上所有的 n 个游戏均有折扣 // 标号为 i 的游戏的原价a_i元,现价只要b_i元 // 也就是说该游戏可以优惠 a_i - b_i,并且你购买该游戏能获得快乐值为w_i // 由于优惠的存在,你可能做出一些冲动消费导致最终买游戏的总费用超过预算 // 只要满足 : 获得的总优惠金额不低于超过预算的总金额 // 那在心理上就不会觉得吃亏。 // 现在你希望在心理上不觉得吃亏的前提下,获得尽可能多的快乐值。 // 测试链接 : https://leetcode.cn/problems/tJau2o/ // 请同学们务必参考如下代码中关于输入、输出的处理 // 这是输入输出处理效率很高的写法 // 提交以下的所有代码,并把主类名改成"Main",可以直接通过 import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.io.StreamTokenizer; import java.util.Arrays; public class Code02_BuyGoodsHaveDiscount { public static int MAXN = 501; public static int MAXX = 100001; // 对于"一定要买的商品",直接买! // 只把"需要考虑的商品"放入cost、val数组 public static int[] cost = new int[MAXN]; public static long[] val = new long[MAXN]; public static long[] dp = new long[MAXX]; public static int n, m, x; public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StreamTokenizer in = new StreamTokenizer(br); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); while (in.nextToken() != StreamTokenizer.TT_EOF) { n = (int) in.nval; m = 1; in.nextToken(); x = (int) in.nval; long ans = 0; long happy = 0; for (int i = 1, pre, cur, well; i <= n; i++) { // 原价 in.nextToken(); pre = (int) in.nval; // 现价 in.nextToken(); cur = (int) in.nval; // 快乐值 in.nextToken(); happy = (long) in.nval; well = pre - cur - cur; // 如下是一件"一定要买的商品" // 预算 = 100,商品原价 = 10,打折后 = 3 // 那么好处(well) = (10 - 3) - 3 = 4 // 所以,可以认为这件商品把预算增加到了104!一定要买! // 如下是一件"需要考虑的商品" // 预算 = 104,商品原价 = 10,打折后 = 8 // 那么好处(well) = (10 - 8) - 8 = -6 // 所以,可以认为这件商品就花掉6元! // 也就是说以后花的不是打折后的值,是"坏处" if (well >= 0) { x += well; ans += happy; } else { cost[m] = -well; val[m++] = happy; } } ans += compute(); out.println(ans); } out.flush(); out.close(); br.close(); } public static long compute() { Arrays.fill(dp, 0, x + 1, 0); for (int i = 1; i <= m; i++) { for (int j = x; j >= cost[i]; j--) { dp[j] = Math.max(dp[j], dp[j - cost[i]] + val[i]); } } return dp[x]; } }
code3 494. 目标和
// 目标和
// 给你一个非负整数数组 nums 和一个整数 target 。
// 向数组中的每个整数前添加 ‘+’ 或 ‘-’ ,然后串联起所有整数
// 可以构造一个表达式
// 例如nums=[2, 1],可以在2之前添加’+’ ,在1之前添加’-’
// 然后串联起来得到表达式 “+2-1” 。
// 返回可以通过上述方法构造的,运算结果等于 target 的不同表达式的数目
// 测试链接 : https://leetcode.cn/problems/target-sum/
划分为A B两集合
sumA-sumB=target
sumB=sum-sumA
sumA=(target+sum)/2
code1 递归
code2 记忆化搜索
code3 动态规划
code4 01背包
package class073; import java.util.HashMap; // 目标和 // 给你一个非负整数数组 nums 和一个整数 target 。 // 向数组中的每个整数前添加 '+' 或 '-' ,然后串联起所有整数 // 可以构造一个表达式 // 例如nums=[2, 1],可以在2之前添加'+' ,在1之前添加'-' // 然后串联起来得到表达式 "+2-1" 。 // 返回可以通过上述方法构造的,运算结果等于 target 的不同表达式的数目 // 测试链接 : https://leetcode.cn/problems/target-sum/ public class Code03_TargetSum { // 普通尝试,暴力递归版 public static int findTargetSumWays1(int[] nums, int target) { return f1(nums, target, 0, 0); } // nums[0...i-1]范围上,已经形成的累加和是sum // nums[i...]范围上,每个数字可以标记+或者- // 最终形成累加和为target的不同表达式数目 public static int f1(int[] nums, int target, int i, int sum) { if (i == nums.length) { return sum == target ? 1 : 0; } return f1(nums, target, i + 1, sum + nums[i]) + f1(nums, target, i + 1, sum - nums[i]); } // 普通尝试,记忆化搜索版 public static int findTargetSumWays2(int[] nums, int target) { // i, sum -> value(返回值 ) HashMap<Integer, HashMap<Integer, Integer>> dp = new HashMap<>(); return f2(nums, target, 0, 0, dp); } // 因为累加和可以为负数 // 所以缓存动态规划表用哈希表 public static int f2(int[] nums, int target, int i, int j, HashMap<Integer, HashMap<Integer, Integer>> dp) { if (i == nums.length) { return j == target ? 1 : 0; } if (dp.containsKey(i) && dp.get(i).containsKey(j)) { return dp.get(i).get(j); } int ans = f2(nums, target, i + 1, j + nums[i], dp) + f2(nums, target, i + 1, j - nums[i], dp); dp.putIfAbsent(i, new HashMap<>()); dp.get(i).put(j, ans); return ans; } // 普通尝试 // 严格位置依赖的动态规划 // 平移技巧 public static int findTargetSumWays3(int[] nums, int target) { int s = 0; for (int num : nums) { s += num; } if (target < -s || target > s) { return 0; } int n = nums.length; // -s ~ +s -> 2 * s + 1 int m = 2 * s + 1; // 原本的dp[i][j]含义: // nums[0...i-1]范围上,已经形成的累加和是sum // nums[i...]范围上,每个数字可以标记+或者- // 最终形成累加和为target的不同表达式数目 // 因为sum可能为负数,为了下标不出现负数, // "原本的dp[i][j]"由dp表中的dp[i][j + s]来表示 // 也就是平移操作! // 一切"原本的dp[i][j]"一律平移到dp表中的dp[i][j + s] int[][] dp = new int[n + 1][m]; // 原本的dp[n][target] = 1,平移! dp[n][target + s] = 1; for (int i = n - 1; i >= 0; i--) { for (int j = -s; j <= s; j++) { if (j + nums[i] + s < m) { // 原本是 : dp[i][j] = dp[i + 1][j + nums[i]] // 平移! dp[i][j + s] = dp[i + 1][j + nums[i] + s]; } if (j - nums[i] + s >= 0) { // 原本是 : dp[i][j] += dp[i + 1][j - nums[i]] // 平移! dp[i][j + s] += dp[i + 1][j - nums[i] + s]; } } } // 原本应该返回dp[0][0] // 平移! // 返回dp[0][0 + s] return dp[0][s]; } // 新思路,转化为01背包问题 // 思考1: // 虽然题目说nums是非负数组,但即使nums中有负数比如[3,-4,2] // 因为能在每个数前面用+或者-号 // 所以[3,-4,2]其实和[3,4,2]会达成一样的结果 // 所以即使nums中有负数,也可以把负数直接变成正数,也不会影响结果 // 思考2: // 如果nums都是非负数,并且所有数的累加和是sum // 那么如果target>sum,很明显没有任何方法可以达到target,可以直接返回0 // 思考3: // nums内部的数组,不管怎么+和-,最终的结果都一定不会改变奇偶性 // 所以,如果所有数的累加和是sum,并且与target的奇偶性不一样 // 那么没有任何方法可以达到target,可以直接返回0 // 思考4(最重要): // 比如说给定一个数组, nums = [1, 2, 3, 4, 5] 并且 target = 3 // 其中一个方案是 : +1 -2 +3 -4 +5 = 3 // 该方案中取了正的集合为A = {1,3,5} // 该方案中取了负的集合为B = {2,4} // 所以任何一种方案,都一定有 sum(A) - sum(B) = target // 现在我们来处理一下这个等式,把左右两边都加上sum(A) + sum(B),那么就会变成如下: // sum(A) - sum(B) + sum(A) + sum(B) = target + sum(A) + sum(B) // 2 * sum(A) = target + 数组所有数的累加和 // sum(A) = (target + 数组所有数的累加和) / 2 // 也就是说,任何一个集合,只要累加和是(target + 数组所有数的累加和) / 2 // 那么就一定对应一种target的方式 // 比如非负数组nums,target = 1, nums所有数累加和是11 // 求有多少方法组成1,其实就是求,有多少种子集累加和达到6的方法,(1+11)/2=6 // 因为,子集累加和6 - 另一半的子集累加和5 = 1(target) // 所以有多少个累加和为6的不同集合,就代表有多少个target==1的表达式数量 // 至此已经转化为01背包问题了 public static int findTargetSumWays4(int[] nums, int target) { int sum = 0; for (int n : nums) { sum += n; } if (sum < target || ((target & 1) ^ (sum & 1)) == 1) { return 0; } return subsets(nums, (target + sum) >> 1); } // 求非负数组nums有多少个子序列累加和是t // 01背包问题(子集累加和严格是t) + 空间压缩 // dp[i][j] = dp[i-1][j] + dp[i-1][j-nums[i]] public static int subsets(int[] nums, int t) { if (t < 0) { return 0; } int[] dp = new int[t + 1]; dp[0] = 1; for (int num : nums) { // i省略了 for (int j = t; j >= num; j--) { dp[j] += dp[j - num]; } } return dp[t]; } }
code4 1049. 最后一块石头的重量 II
// 最后一块石头的重量 II
// 有一堆石头,用整数数组 stones 表示
// 其中 stones[i] 表示第 i 块石头的重量。
// 每一回合,从中选出任意两块石头,然后将它们一起粉碎
// 假设石头的重量分别为 x 和 y,且 x <= y
// 那么粉碎的可能结果如下:
// 如果 x == y,那么两块石头都会被完全粉碎;
// 如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x
// 最后,最多只会剩下一块 石头,返回此石头 最小的可能重量
// 如果没有石头剩下,就返回 0
// 测试链接 : https://leetcode.cn/problems/last-stone-weight-ii/
划分为A B两集合
划分为A B两集合
abs(sumA-sumB)小
sumB=sum-sumA
sumA与sum/2最接近
dp[i][j]:前i个数不超过j的最接近累加和
①dp[i-1][j]
②dp[i-1][j-nums[i]]+nums[i]
两者取较大值
package class073; // 最后一块石头的重量 II // 有一堆石头,用整数数组 stones 表示 // 其中 stones[i] 表示第 i 块石头的重量。 // 每一回合,从中选出任意两块石头,然后将它们一起粉碎 // 假设石头的重量分别为 x 和 y,且 x <= y // 那么粉碎的可能结果如下: // 如果 x == y,那么两块石头都会被完全粉碎; // 如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x // 最后,最多只会剩下一块 石头,返回此石头 最小的可能重量 // 如果没有石头剩下,就返回 0 // 测试链接 : https://leetcode.cn/problems/last-stone-weight-ii/ public class Code04_LastStoneWeightII { public static int lastStoneWeightII(int[] nums) { int sum = 0; for (int num : nums) { sum += num; } // nums中随意选择数字 // 累加和一定要 <= sum / 2 // 又尽量接近 int near = near(nums, sum / 2); return sum - near - near; } // 非负数组nums中,子序列累加和不超过t,但是最接近t的累加和是多少 // 01背包问题(子集累加和尽量接近t) + 空间压缩 public static int near(int[] nums, int t) { int[] dp = new int[t + 1]; for (int num : nums) { for (int j = t; j >= num; j--) { // dp[i][j] = Math.max(dp[i-1][j], dp[i-1][j-nums[i]]+nums[i]) dp[j] = Math.max(dp[j], dp[j - num] + num); } } return dp[t]; } }
code5 购物单
// 有依赖的背包(模版)
// 物品分为两大类:主件和附件
// 主件的购买没有限制,钱够就可以;附件的购买有限制,该附件所归属的主件先购买,才能购买这个附件
// 例如,若想买打印机或扫描仪这样的附件,必须先购买电脑这个主件
// 以下是一些主件及其附件的展示:
// 电脑:打印机,扫描仪 | 书柜:图书 | 书桌:台灯,文具 | 工作椅:无附件
// 每个主件最多有2个附件,并且附件不会再有附件,主件购买后,怎么去选择归属附件完全随意,钱够就可以
// 所有的物品编号都在1~m之间,每个物品有三个信息:价格v、重要度p、归属q
// 价格就是花费,价格 * 重要度 就是收益,归属就是该商品是依附于哪个编号的主件
// 比如一件商品信息为[300,2,6],花费300,收益600,该商品是6号主件商品的附件
// 再比如一件商品信息[100,4,0],花费100,收益400,该商品自身是主件(q==0)
// 给定m件商品的信息,给定总钱数n,返回在不违反购买规则的情况下最大的收益
// 测试链接 : https://www.luogu.com.cn/problem/P1064
// 测试链接 : https://www.nowcoder.com/practice/f9c6f980eeec43ef85be20755ddbeaf4
// 请同学们务必参考如下代码中关于输入、输出的处理
// 这是输入输出处理效率很高的写法
// 提交以下的所有代码,并把主类名改成"Main",可以直接通过
king数组:表示是否是主商品
fans数组:附件数量
followss数组:附件编号数组
dp[i][j]:0…i范围上,只关心主商品,并且进行展开,花费不超过j的情况下,获得的最大收益
情况1:不要该主商品,dp[p][j],p是上一个主商品的编号
情况2:只要主商品,dp[p][j-cost[i]]+val[i]
有附件的情况下考虑:
情况3:要主商品,要附件1,dp[p][j-cost[i]-cost[fan1]]+val[i],j-cost[i]-cost[fan1]>=0
情况4:要主商品,要附件2,dp[p][j-cost[i]-cost[fan2]]+val[i],j-cost[i]-cost[fan2]>=0
情况5:要主商品,要附件1和2,dp[p][j-cost[i]-cost[fan1]-cost[fan2]]+val[i],j-cost[i]-cost[fan1]-cost[fan2]>=0
所有情况下选最大值。
0行:无商品的时候,无收益,为0
返回:dp[p][i],最后一件主键商品展开后的最大收益。
package class073; // 有依赖的背包(模版) // 物品分为两大类:主件和附件 // 主件的购买没有限制,钱够就可以;附件的购买有限制,该附件所归属的主件先购买,才能购买这个附件 // 例如,若想买打印机或扫描仪这样的附件,必须先购买电脑这个主件 // 以下是一些主件及其附件的展示: // 电脑:打印机,扫描仪 | 书柜:图书 | 书桌:台灯,文具 | 工作椅:无附件 // 每个主件最多有2个附件,并且附件不会再有附件,主件购买后,怎么去选择归属附件完全随意,钱够就可以 // 所有的物品编号都在1~m之间,每个物品有三个信息:价格v、重要度p、归属q // 价格就是花费,价格 * 重要度 就是收益,归属就是该商品是依附于哪个编号的主件 // 比如一件商品信息为[300,2,6],花费300,收益600,该商品是6号主件商品的附件 // 再比如一件商品信息[100,4,0],花费100,收益400,该商品自身是主件(q==0) // 给定m件商品的信息,给定总钱数n,返回在不违反购买规则的情况下最大的收益 // 测试链接 : https://www.luogu.com.cn/problem/P1064 // 测试链接 : https://www.nowcoder.com/practice/f9c6f980eeec43ef85be20755ddbeaf4 // 请同学们务必参考如下代码中关于输入、输出的处理 // 这是输入输出处理效率很高的写法 // 提交以下的所有代码,并把主类名改成"Main",可以直接通过 import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.io.StreamTokenizer; import java.util.Arrays; public class Code05_DependentKnapsack { public static int MAXN = 33001; public static int MAXM = 61; public static int[] cost = new int[MAXM]; public static int[] val = new int[MAXM]; public static boolean[] king = new boolean[MAXM]; public static int[] fans = new int[MAXM]; public static int[][] follows = new int[MAXM][2]; public static int[] dp = new int[MAXN]; public static int n, m; public static void clean() { for (int i = 1; i <= m; i++) { fans[i] = 0; } } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StreamTokenizer in = new StreamTokenizer(br); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); while (in.nextToken() != StreamTokenizer.TT_EOF) { n = (int) in.nval; in.nextToken(); m = (int) in.nval; clean(); for (int i = 1, v, p, q; i <= m; i++) { in.nextToken(); v = (int) in.nval; in.nextToken(); p = (int) in.nval; in.nextToken(); q = (int) in.nval; cost[i] = v; val[i] = v * p; king[i] = q == 0; if (q != 0) { follows[q][fans[q]++] = i; } } out.println(compute2()); } out.flush(); out.close(); br.close(); } // 严格位置依赖的动态规划 public static int compute1() { // dp[0][....] = 0 : 无商品的时候 int[][] dp = new int[m + 1][n + 1]; // p : 上次展开的主商品编号 int p = 0; for (int i = 1, fan1, fan2; i <= m; i++) { if (king[i]) { for (int j = 0; j <= n; j++) { // dp[i][j] : 0...i范围上,只关心主商品,并且进行展开 // 花费不超过j的情况下,获得的最大收益 // 可能性1 : 不考虑当前主商品 dp[i][j] = dp[p][j]; if (j - cost[i] >= 0) { // 可能性2 : 考虑当前主商品,只要主 dp[i][j] = Math.max(dp[i][j], dp[p][j - cost[i]] + val[i]); } // fan1 : 如果有附1商品,编号给fan1,如果没有,fan1 == -1 // fan2 : 如果有附2商品,编号给fan2,如果没有,fan2 == -1 fan1 = fans[i] >= 1 ? follows[i][0] : -1; fan2 = fans[i] >= 2 ? follows[i][1] : -1; if (fan1 != -1 && j - cost[i] - cost[fan1] >= 0) { // 可能性3 : 主 + 附1 dp[i][j] = Math.max(dp[i][j], dp[p][j - cost[i] - cost[fan1]] + val[i] + val[fan1]); } if (fan2 != -1 && j - cost[i] - cost[fan2] >= 0) { // 可能性4 : 主 + 附2 dp[i][j] = Math.max(dp[i][j], dp[p][j - cost[i] - cost[fan2]] + val[i] + val[fan2]); } if (fan1 != -1 && fan2 != -1 && j - cost[i] - cost[fan1] - cost[fan2] >= 0) { // 可能性5 : 主 + 附1 + 附2 dp[i][j] = Math.max(dp[i][j], dp[p][j - cost[i] - cost[fan1] - cost[fan2]] + val[i] + val[fan1] + val[fan2]); } } p = i; } } return dp[p][n]; } // 空间压缩 public static int compute2() { Arrays.fill(dp, 0, n + 1, 0); for (int i = 1, fan1, fan2; i <= m; i++) { if (king[i]) { for (int j = n; j >= cost[i]; j--) { dp[j] = Math.max(dp[j], dp[j - cost[i]] + val[i]); fan1 = fans[i] >= 1 ? follows[i][0] : -1; fan2 = fans[i] >= 2 ? follows[i][1] : -1; if (fan1 != -1 && j - cost[i] - cost[fan1] >= 0) { dp[j] = Math.max(dp[j], dp[j - cost[i] - cost[fan1]] + val[i] + val[fan1]); } if (fan2 != -1 && j - cost[i] - cost[fan2] >= 0) { dp[j] = Math.max(dp[j], dp[j - cost[i] - cost[fan2]] + val[i] + val[fan2]); } if (fan1 != -1 && fan2 != -1 && j - cost[i] - cost[fan1] - cost[fan2] >= 0) { dp[j] = Math.max(dp[j], dp[j - cost[i] - cost[fan1] - cost[fan2]] + val[i] + val[fan1] + val[fan2]); } } } } return dp[n]; } }
code6 非负数组前k个最小的子序列累加和
// 非负数组前k个最小的子序列累加和
// 给定一个数组nums,含有n个数字,都是非负数
// 给定一个正数k,返回所有子序列中累加和最小的前k个累加和
// 子序列是包含空集的
// 1 <= n <= 10^5
// 1 <= nums[i] <= 10^6
// 1 <= k <= 10^5
// 注意这个数据量,用01背包的解法是不行的,时间复杂度太高了
// 对数器验证
01背包:
dp[i][j]:i个数,累加和为j的子序列个数
- dp[i-1][j]
- dp[i-1][j-nums[i]]
dp[n][…]:累加和为0…n的子序列计数
堆:容量为k的优先队列
初始数据从小到大排序,放入第一个
弹出小顶堆的顶(集合),sum加入结果数组
①删除集合最后一个数,下一个放入
②再加入下一个,放入
优化:只记录当前最后一个下标
package class073; import java.util.ArrayList; import java.util.Arrays; import java.util.PriorityQueue; // 非负数组前k个最小的子序列累加和 // 给定一个数组nums,含有n个数字,都是非负数 // 给定一个正数k,返回所有子序列中累加和最小的前k个累加和 // 子序列是包含空集的 // 1 <= n <= 10^5 // 1 <= nums[i] <= 10^6 // 1 <= k <= 10^5 // 注意这个数据量,用01背包的解法是不行的,时间复杂度太高了 // 对数器验证 public class Code06_TopKMinimumSubsequenceSum { // 暴力方法 // 为了验证 public static int[] topKSum1(int[] nums, int k) { ArrayList<Integer> allSubsequences = new ArrayList<>(); f1(nums, 0, 0, allSubsequences); allSubsequences.sort((a, b) -> a.compareTo(b)); int[] ans = new int[k]; for (int i = 0; i < k; i++) { ans[i] = allSubsequences.get(i); } return ans; } // 暴力方法 // 得到所有子序列的和 public static void f1(int[] nums, int index, int sum, ArrayList<Integer> ans) { if (index == nums.length) { ans.add(sum); } else { f1(nums, index + 1, sum, ans); f1(nums, index + 1, sum + nums[index], ans); } } // 01背包来实现 // 这种方法此时不是最优解 // 因为n很大,数值也很大,那么可能的累加和就更大 // 时间复杂度太差 public static int[] topKSum2(int[] nums, int k) { int sum = 0; for (int num : nums) { sum += num; } // dp[i][j] // 1) dp[i-1][j] // 2) dp[i-1][j-nums[i] int[] dp = new int[sum + 1]; dp[0] = 1; for (int num : nums) { for (int j = sum; j >= num; j--) { dp[j] += dp[j - num]; } } int[] ans = new int[k]; int index = 0; for (int j = 0; j <= sum && index < k; j++) { for (int i = 0; i < dp[j] && index < k; i++) { ans[index++] = j; } } return ans; } // 正式方法 // 用堆来做是最优解,时间复杂度O(n * log n) + O(k * log k) public static int[] topKSum3(int[] nums, int k) { Arrays.sort(nums); // (子序列的最右下标,子序列的累加和) PriorityQueue<int[]> heap = new PriorityQueue<>((a, b) -> a[1] - b[1]); heap.add(new int[] { 0, nums[0] }); int[] ans = new int[k]; for (int i = 1; i < k; i++) { int[] cur = heap.poll(); int right = cur[0]; int sum = cur[1]; ans[i] = sum; if (right + 1 < nums.length) { heap.add(new int[] { right + 1, sum - nums[right] + nums[right + 1] }); heap.add(new int[] { right + 1, sum + nums[right + 1] }); } } return ans; } // 为了测试 public static int[] randomArray(int len, int value) { int[] ans = new int[len]; for (int i = 0; i < len; i++) { ans[i] = (int) (Math.random() * value); } return ans; } // 为了测试 public static boolean equals(int[] ans1, int[] ans2) { if (ans1.length != ans2.length) { return false; } for (int i = 0; i < ans1.length; i++) { if (ans1[i] != ans2[i]) { return false; } } return true; } // 为了测试 // 对数器 public static void main(String[] args) { int n = 15; int v = 40; int testTime = 5000; System.out.println("测试开始"); for (int i = 0; i < testTime; i++) { int len = (int) (Math.random() * n) + 1; int[] nums = randomArray(len, v); int k = (int) (Math.random() * ((1 << len) - 1)) + 1; int[] ans1 = topKSum1(nums, k); int[] ans2 = topKSum2(nums, k); int[] ans3 = topKSum3(nums, k); if (!equals(ans1, ans2) || !equals(ans1, ans3)) { System.out.println("出错了!"); } } System.out.println("测试结束"); } }
2023-11-12 23:08:57