【大数据技术】Spark MLlib机器学习库、数据类型详解(图文解释)

简介: 【大数据技术】Spark MLlib机器学习库、数据类型详解(图文解释)

机器学习的定义

机器学习是一种通过利用数据,训练出模型,然后使用模型预测的一种方法。机器学习的构建过程是利用数据通过算法构建出模型并对模型进行评估,评估的性能如果达到要求就拿这个模型来测试其他的数据,如果达不到要求就要调整算法来重新建立模型,再次进行评估,如此循环往复,最终获得满意的经验来处理其他的数据。

机器学习的分类

1:监督学习

通过已有的训练样本(即已知数据以及其对应的输出)训练得到一个最优模型,再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现分类的目的。例如分类、回归和推荐算法都属于有监督学习。

2:无监督学习

根据类别未知(没有被标记)的训练样本,而需要直接对数据进行建模,我们无法知道要预测的答案。例如聚类、降维和文本处理的某些特征提取都属于无监督学习。

3:半监督学习

半监督学习(Semi-supervised Learning)是介于监督学习与无监督学习之间的一种机器学习方式,是模式识别和机器学习领域研究的重点问题。它主要考虑如何利用少量的标注样本和大量的未标注样本进行训练和分类的问题。

4:强化学习

通过观察来学习动作的完成,每个动作都会对环境有所影响,学习对象根据观察到的周围环境的反馈来做出判断。

MLlib的简介

MLlib是Spark提供的可扩展的机器学习库,其中封装了一些通用机器学习算法和工具类,包括分类、回归、聚类、降维等,开发人员在开发过程中只需要关注数据,而不需要关注算法本身,只需要传递参数和调试参数。

MLlib数据类型

1:密集向量(Dense)

密集向量是由Double类型的数组支持,例如,向量(1.0,0.0,3.0)的密集向量表示的格式为[1.0,0.0,3.0]。

2:稀疏向量(Sparse)

稀疏向量是由两个并列的数组支持,例如向量(1.0,0.0,3.0)的稀疏向量表示的格式为(3,[0,2],[1.0,3.0]),其中3是向量(1.0,0.0,3.0)的长度,[0,2]是向量中非0维度的索引值,即向量索引0和2的位置为非0元素,[1.0,3.0]是按索引排列的数组元素值。

3:标注点

标注点是一种带有标签的本地向量,标注点通常用于监督学习算法中,MLlib使用Double数据类型存储标签,因此可以在回归和分类中使用标记点。

4:密集矩阵

密集矩阵将所有元素的值存储在一个列优先的双精度数组中。

5:稀疏矩阵

稀疏矩阵则将以列优先的非零元素压缩到稀疏列(CSC)格式中

创建一个3行2列的稀疏矩阵[ [9.0,0.0], [0.0,8.0],[0.0,6.0]] 第一个数组参数Array(0,1,3)表示列指针,表示每一列非零元素的索引值。 第二个数组参数Array(0,2,1)表示行索引,表示对应的非零元素是属于哪一行。 第三个数组Array(9,6,8)是按列优先排序的所有非零元素,通过列指针和行索引即可判断每个元素所在的位置。

创作不易 觉得有帮助请点赞关注收藏~~~

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
6月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
364 0
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
Java 大视界 -- Java 大数据机器学习模型在自然语言生成中的可控性研究与应用(229)
本文深入探讨Java大数据与机器学习在自然语言生成(NLG)中的可控性研究,分析当前生成模型面临的“失控”挑战,如数据噪声、标注偏差及黑盒模型信任问题,提出Java技术在数据清洗、异构框架融合与生态工具链中的关键作用。通过条件注入、强化学习与模型融合等策略,实现文本生成的精准控制,并结合网易新闻与蚂蚁集团的实战案例,展示Java在提升生成效率与合规性方面的卓越能力,为金融、法律等强监管领域提供技术参考。
|
4月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据机器学习模型在生物信息学基因功能预测中的优化与应用(223)
本文探讨了Java大数据与机器学习模型在生物信息学中基因功能预测的优化与应用。通过高效的数据处理能力和智能算法,提升基因功能预测的准确性与效率,助力医学与农业发展。
|
4月前
|
机器学习/深度学习 搜索推荐 数据可视化
Java 大视界 -- Java 大数据机器学习模型在电商用户流失预测与留存策略制定中的应用(217)
本文探讨 Java 大数据与机器学习在电商用户流失预测与留存策略中的应用。通过构建高精度预测模型与动态分层策略,助力企业提前识别流失用户、精准触达,实现用户留存率与商业价值双提升,为电商应对用户流失提供技术新思路。
|
4月前
|
机器学习/深度学习 存储 分布式计算
Java 大视界 --Java 大数据机器学习模型在金融风险压力测试中的应用与验证(211)
本文探讨了Java大数据与机器学习模型在金融风险压力测试中的创新应用。通过多源数据采集、模型构建与优化,结合随机森林、LSTM等算法,实现信用风险动态评估、市场极端场景模拟与操作风险预警。案例分析展示了花旗银行与蚂蚁集团的智能风控实践,验证了技术在提升风险识别效率与降低金融风险损失方面的显著成效。
|
4月前
|
机器学习/深度学习 自然语言处理 算法
Java 大视界 -- Java 大数据机器学习模型在自然语言处理中的对抗训练与鲁棒性提升(205)
本文探讨Java大数据与机器学习在自然语言处理中的对抗训练与鲁棒性提升,分析对抗攻击原理,结合Java技术构建对抗样本、优化训练策略,并通过智能客服等案例展示实际应用效果。
|
5月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
5月前
|
机器学习/深度学习 存储 Java
Java 大视界 -- Java 大数据机器学习模型在游戏用户行为分析与游戏平衡优化中的应用(190)
本文探讨了Java大数据与机器学习模型在游戏用户行为分析及游戏平衡优化中的应用。通过数据采集、预处理与聚类分析,开发者可深入洞察玩家行为特征,构建个性化运营策略。同时,利用回归模型优化游戏数值与付费机制,提升游戏公平性与用户体验。
|
5月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据机器学习模型在舆情分析中的情感倾向判断与话题追踪(185)
本篇文章深入探讨了Java大数据与机器学习在舆情分析中的应用,重点介绍了情感倾向判断与话题追踪的技术实现。通过实际案例,展示了如何利用Java生态工具如Hadoop、Hive、Weka和Deeplearning4j进行舆情数据处理、情感分类与趋势预测,揭示了其在企业品牌管理与政府决策中的重要价值。文章还展望了多模态融合、实时性提升及个性化服务等未来发展方向。
|
机器学习/深度学习 数据采集 算法
Java 大视界 -- Java 大数据机器学习模型在金融衍生品定价中的创新方法与实践(166)
本文围绕 Java 大数据机器学习模型在金融衍生品定价中的应用展开,分析定价现状与挑战,阐述技术原理与应用,结合真实案例与代码给出实操方案,助力提升金融衍生品定价的准确性与效率。
Java 大视界 -- Java 大数据机器学习模型在金融衍生品定价中的创新方法与实践(166)

热门文章

最新文章