【Python机器学习】密度聚类DBSCAN、OPTICS的讲解及实战演示(附源码 超详细)

简介: 【Python机器学习】密度聚类DBSCAN、OPTICS的讲解及实战演示(附源码 超详细)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

划分聚类、密度聚类和模型聚类是比较有代表性的三种聚类思路

1:划分聚类

划分(Partitioning)聚类是基于距离的,它的基本思想是使簇内的点距离尽量近、簇间的点距离尽量远。k-means算法就属于划分聚类。划分聚类适合凸样本点集合的分簇。

2:密度聚类

密度(Density)聚类是基于所谓的密度进行分簇

密度聚类的思想是当邻域的密度达到指定阈值时,就将邻域内的样本点合并到本簇内,如果本簇内所有样本点的邻域密度都达不到指定阈值,则本簇划分完毕,进行下一个簇的划分。

DBSCAN

DBSCAN算法将所有样本点分为核心点、边界点和噪声点,如灰色点、白色点和黑色点所示

核心点:在指定大小的邻域内有不少于指定数量的点。指定大小的邻域,一般用邻域半径eps来确定。指定数量用min_samples来表示。

边界点:处于核心点的邻域内的非核心点。

噪声点:邻域内没有核心点的点

DBSCAN算法需要预先指定eps和min_samples两个参数,即它们是超参数。

算法寻找一个簇的过程是先对样本点按顺序排查,如果能找到一个核心点,就从该核心点出发找出所有直接和间接与之相邻的核心点,以及这些核心点的所有边界点,这些核心点和边界点就形成一个簇

接着,从剩下的点中再找另一个簇,直到没有核心点为止。余下的点为噪声点。

效果展示如下 对数据集中三十个坐标应用DBSCAN算法

下面三幅图是eps和min_samples取不同值时候的分布情况

代码如下

from sklearn.cluster import DBSCAN
import numpy as np
samples = np.loadtxt("kmeansSamples.txt")
clustering = DBSCAN(eps=5, min_samples=5).fit(samples)
clustering.labels_
>>>array([ 0,  0,  0,  0, -1,  0,  0,  0,  1,  1,  1,  1,  0,  0,  0,  0, -1,        1,  1,  0,  0,  1,  0,  0,  0,  0,  0,  1, -1,  0], dtype=int64)
import matplotlib.pyplot as plt
plt.scatter(samples[:,0],samples[:,1],c=clustering.labels_+1.5,linewidths=np.power(clustering.labels_+1.5, 2))
plt.show()

DBSCAN算法善于发现任意形状的稠密分布数据集,但它的结果对邻域参数eps和min_samples敏感。不像k-means算法只需要调整一个参数,DBSCAN算法需要对两个参数进行联合调参,复杂度要高的多。

如果能确定聚类的具体评价指标,如簇数、噪声点数限制和SC、DBI、CH和ZQ等,则可以对参数eps和min_samples的合理取值依次运行DBSCAN算法,取最好的评价结果。如果数据量特别大,则可以将参数空间划分为若干网格,每个网格取一个代表值进行聚类。

OPTICS

OPTICS算法的基本思想是在DBSCAN算法的基础上,将每个点离最近的核心点密集区的可达距离都计算出来,然后根据预先指定的距离阈值把每个点分到与密集区对应的簇中,可达距离超过阈值的点是噪声点。点到核心点密集区的可达距离是它到该区内所有核心点的距离的最小值。

引入可达距离可以直观的看到样本点的聚集情况,OPTICS算法巧妙地解决了确定eps参数值的问题

输出结果如下

代码如下

from sklearn.cluster import OPTICS, cluster_optics_dbscan
import matplotlib.pyplot as plt
import numpy as np
samples = np.loadtxt("kmeansSamples.txt")
clust = OPTICS(max_eps=np.inf,min_samples=5, cluster_method='dbscan',eps=4.5)
clust.fit(samples)
clust.ordering_
reachability = clust.reachability_[clust.ordering_]
reachability
labels = clust.labels_[clust.ordering_]
labels
plt.plot(list(range(1, 31)),reachability,marker='.',markeredgewidth=3,linestyle='-')
plt.show()
plt.scatter(samples[:,0],samples[:,1],c=clust.labels_+1.5,linewidths=np.power(clust.labels_+1.5, 2))
plt.show()

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
3天前
|
机器学习/深度学习 TensorFlow API
机器学习实战:TensorFlow在图像识别中的应用探索
【10月更文挑战第28天】随着深度学习技术的发展,图像识别取得了显著进步。TensorFlow作为Google开源的机器学习框架,凭借其强大的功能和灵活的API,在图像识别任务中广泛应用。本文通过实战案例,探讨TensorFlow在图像识别中的优势与挑战,展示如何使用TensorFlow构建和训练卷积神经网络(CNN),并评估模型的性能。尽管面临学习曲线和资源消耗等挑战,TensorFlow仍展现出广阔的应用前景。
17 5
|
10天前
|
数据采集 机器学习/深度学习 搜索推荐
Python自动化:关键词密度分析与搜索引擎优化
Python自动化:关键词密度分析与搜索引擎优化
|
20天前
|
机器学习/深度学习 人工智能 算法
揭开深度学习与传统机器学习的神秘面纱:从理论差异到实战代码详解两者间的选择与应用策略全面解析
【10月更文挑战第10天】本文探讨了深度学习与传统机器学习的区别,通过图像识别和语音处理等领域的应用案例,展示了深度学习在自动特征学习和处理大规模数据方面的优势。文中还提供了一个Python代码示例,使用TensorFlow构建多层感知器(MLP)并与Scikit-learn中的逻辑回归模型进行对比,进一步说明了两者的不同特点。
52 2
|
20天前
|
机器学习/深度学习 数据挖掘 Serverless
手把手教你全面评估机器学习模型性能:从选择正确评价指标到使用Python与Scikit-learn进行实战演练的详细指南
【10月更文挑战第10天】评估机器学习模型性能是开发流程的关键,涉及准确性、可解释性、运行速度等多方面考量。不同任务(如分类、回归)采用不同评价指标,如准确率、F1分数、MSE等。示例代码展示了使用Scikit-learn库评估逻辑回归模型的过程,包括数据准备、模型训练、性能评估及交叉验证。
42 1
|
1月前
|
机器学习/深度学习 数据采集 分布式计算
【Python篇】深入机器学习核心:XGBoost 从入门到实战
【Python篇】深入机器学习核心:XGBoost 从入门到实战
65 3
|
1月前
|
自然语言处理 Java 编译器
为什么要看 Python 源码?它的结构长什么样子?
为什么要看 Python 源码?它的结构长什么样子?
23 2
|
1月前
|
机器学习/深度学习 算法 数据可视化
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧2
【Python篇】深度探索NumPy(下篇):从科学计算到机器学习的高效实战技巧
34 1
|
14天前
|
数据采集 机器学习/深度学习 TensorFlow
声纹识别实战:从数据采集到模型训练
【10月更文挑战第16天】声纹识别技术通过分析个人的语音特征来验证其身份,具有无接触、便捷的特点。本文将带你从零开始,一步步完成声纹识别系统的构建,包括数据采集、音频预处理、特征提取、模型训练及评估等关键步骤。我们将使用Python语言和相关的科学计算库来进行实践。
50 0
|
19天前
|
机器学习/深度学习 算法 数据可视化
机器学习的核心功能:分类、回归、聚类与降维
机器学习领域的基本功能类型通常按照学习模式、预测目标和算法适用性来分类。这些类型包括监督学习、无监督学习、半监督学习和强化学习。
22 0
|
1月前
|
数据采集 前端开发 Python
Python pygame 实现游戏 彩色 五子棋 详细注释 附源码 单机版
Python pygame 实现游戏 彩色 五子棋 详细注释 附源码 单机版
62 0

热门文章

最新文章