深度强化学习中Double DQN算法(Q-Learning+CNN)的讲解及在Asterix游戏上的实战(超详细 附源码)

简介: 深度强化学习中Double DQN算法(Q-Learning+CNN)的讲解及在Asterix游戏上的实战(超详细 附源码)

需要源码和环境搭建请点赞关注收藏后评论区留下QQ~~~

一、核心思想

针对DQN中出现的高估问题,有人提出深度双Q网络算法(DDQN),该算法是将强化学习中的双Q学习应用于DQN中。在强化学习中,双Q学习的提出能在一定程度上缓解Q学习带来的过高估计问题。

DDQN的主要思想是在目标值计算时将动作的选择和评估分离,在更新过程中,利用两个网络来学习两组权重,分别是预测网络的权重W和目标网络的权重W',在DQN中,动作选择和评估都是通过目标网络来实现的,而在DDQN中,计算目标Q值时,采取目标网络获取最优动作,再通过预测网络估计该最优动作的目标Q值,这样就可以将最优动作选额和动作值函数估计分离,采用不用的样本保证独立性

二、允许结果与分析

本节实验在Asterix游戏上,通过控制参数变量对DQN,DDQN算法进行性能对比从而验证了在一定程度上,DDQN算法可以缓解DQN算法的高估问题,DDQN需要两个不同的参数网络,每1000步后预测预测网络的参数同步更新给目标网络,实验设有最大能容纳1000000记录的缓冲池,每个Atari游戏,DDQN算法训练1000000时间步

实战结果如下图所示,图中的DDQN算法最后收敛回报明显大于DQN,并且在实验过程中,可以发现DQN算法容易陷入局部的情况,其问题主要在于Q-Learning中的最大化操作,Agent在选择动作时每次都取最大Q值得动作,对于真实的策略来说,在给定的状态下并不是每次都选择Q值最大的动作,因为一般真实的策略都是随机性策略,所以在这里目标值直接选择动作最大的Q值往往会导致目标值高于真实值

为了解决值函数高估计的问题,DDQN算法将动作的选择和动作的评估分别用不同的值函数来实现,结果表明DDQN能够估计出更准确的Q值,在一些Atari2600游戏中可获得更稳定有效的策略

三、代码

部分源码如下

import gym, random, pickle, os.path, math, glob
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
import torch.autograd as autograd
import pdb
from atari_wrappers import make_atari, wrap_deepmind,LazyFrames
    def __init__(self, in_channels=4, num_actions=5):
       nnels: number of channel of input.
                i.e The number of most recent frames stacked together as describe in the paper
            num_actions: number of action-value to output, one-to-one correspondence to action in game.
        """
        super(DQN, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, 32, kernel_size=8, stride=4)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=4, stride=2)
        self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1)
        self.fc4 = nn.Linear(7 * 7 * 64, 512)
        self.fc5 = nn.Linear(512, num_actions)
    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.relu(self.conv2(x))
        x = F.relu(self.conv3(x))
        x = F.relu(self.fc4(x.view(x.size(0), -1)))
        return self.fc5(x)
class Memory_Buffer(object):
    def __init__(self, memory_size=1000):
        self.buffer = []
        self.memory_size = memory_size
        self.next_idx = 0
    def push(self, state, action, reward, next_state, done):
        data = (state, action, reward, next_state, done)
        if len(self.buffer) <= self.memory_size: # buffer not full
            self.buffer.append(data)
        else: # buffer is full
            self.buffer[self.next_idx] = data
        self.next_idx = (self.next_idx + 1) % self.memory_size
    def sample(self, batch_size):
        states, actions, rewards, next_states, dones = [], [], [], [], []
        for i in range(batch_size):
            idx = random.randint(0, self.size() - 1)
            data = self.buffer[idx]
            state, action, reward, next_state, done= data
            states.append(state)
            actions.append(action)
            rewards.append(reward)
            next_states.append(next_state)
            dones.append(done)
        return np.concatenate(states), actions, rewards, np.concatenate(next_states), dones
    def size(self):
        return len(self.buffer)
class DDQNAgent:
    def __init__(self, in_channels = 1, action_space = [], USE_CUDA = False, memory_size = 10000, epsilon  = 1, lr = 1e-4):
        self.epsilon = epsilon
        self.action_space = action_space
        self.memory_buffer = Memory_Buffer(memory_size)
        self.DQN = DQN(in_channels = in_channels, num_actions = action_space.n)
        self.DQN_target = DQN(in_channels = in_channels, num_actions = action_space.n)
        self.DQN_target.load_state_dict(self.DQN.state_dict())
        self.USE_CUDA = USE_CUDA
        if USE_CUDA:
            self.DQN = self.DQN.to(device)
            self.DQN_target = self.DQN_target.to(device)
        self.optimizer = optim.RMSprop(self.DQN.parameters(),lr=lr, eps=0.001, alpha=0.95)
    def observe(self, lazyframe):
        # from Lazy frame to tensor
        state =  torch.from_numpy(lazyframe._force().transpose(2,0,1)[None]/255).float()
        if self.USE_CUDA:
            state = state.to(device)
        return state
    def value(self, state):
        q_values = self.DQN(state)
        return q_values
    def act(self, state, epsilon = None):
        """
        sample actions with epsilon-greedy policy
        recap: with p = epsilon pick random action, else pick action with highest Q(s,a)
        """
        if epsilon is None: epsilon = self.epsilon
        q_values = self.value(state).cpu().detach().numpy()
        if random.random()<epsilon:
            aciton = random.randrange(self.action_space.n)
        else:
            aciton = q_values.argmax(1)[0]
        return aciton
    def compute_td_loss(self, states, actions, rewards, next_states, is_done, gamma=0.99):
        """ Compute td loss using torch operations only. Use the formula above. """
        actions = torch.tensor(actions).long()    # shape: [batch_size]
        rewards = torch.tensor(rewards, dtype =torch.float)  # shape: [batch_size]
        is_done = torch.tensor(is_done, dtype = torch.uint8)  # shape: [batch_size]
        if self.USE_CUDA:
            actions = actions.to(device)
            rewards = rewards.to(device)
            is_done = is_done.to(device)
        # get q-values for all actions in current states
        predicted_qvalues = self.DQN(states)
        # select q-values for chosen actions
        predicted_qvalues_for_actions = predicted_qvalues[
          range(states.shape[0]), actions
        ]
        # compute q-values for all actions in next states
        ## Where DDQN is different from DQN
        predicted_next_qvalues_current = self.DQN(next_states)
        predicted_next_qvalues_target = self.DQN_target(next_states)
        # compute V*(next_states) using predicted next q-values
        next_state_values =  predicted_next_qvalues_target.gather(1, torch.max(predicted_next_qvalues_current, 1)[1].unsqueeze(1)).squeeze(1)
        # compute "target q-values" for loss - it's what's inside square parentheses in the above formula.
        target_qvalues_for_actions = rewards + gamma *next_state_values
        # at the last state we shall use simplified formula: Q(s,a) = r(s,a) since s' doesn't exist
        target_qvalues_for_actions = torch.where(
            is_done, rewards, target_qvalues_for_actions)
        # mean squared error loss to minimize
        #loss = torch.mean((predicted_qvalues_for_actions -
        #                   target_qvalues_for_actions.detach()) ** 2)
        loss = F.smooth_l1_loss(predicted_qvalues_for_actions, target_qvalues_for_actions.detach())
        return loss
    def sample_from_buffer(self, batch_size):
        states, actions, rewards, next_states, dones = [], [], [], [], []
        for i in range(batch_size):
            idx = random.randint(0, self.memory_buffer.size() - 1)
            data = self.memory_buffer.buffer[idx]
            frame, action, reward, next_frame, done= data
            states.append(self.observe(frame))
            actions.append(action)
            rewards.append(reward)
            next_states.append(self.observe(next_frame))
            dones.append(done)
        return torch.cat(states), actions, rewards, torch.cat(next_states), dones
    def learn_from_experience(self, batch_size):
        if self.memory_buffer.size() > batch_size:
            states, actions, rewards, next_states, dones = self.sample_from_buffer(batch_size)
            td_loss = self.compute_td_loss(states, actions, rewards, next_states, dones)
            self.optimizer.zero_grad()
            td_loss.backward()
            for param in self.DQN.parameters():
                param.grad.data.clamp_(-1, 1)
            self.optimizer.step()
            return(td_loss.item())
        else:
            return(0)
def moving_average(a, n=3) :
    ret = np.cumsum(a, dtype=float)
    ret[n:] = ret[n:] - ret[:-n]
    return ret[n - 1:] / n
def plot_training(frame_idx, rewards, losses):
    clear_output(True)
    plt.figure(figsize=(20,5))
    plt.subplot(131)
    plt.title('frame %s. reward: %s' % (frame_idx, np.mean(rewards[-100:])))
    plt.plot(moving_average(rewards,20))
    plt.subplot(132)
    plt.title('loss, average on 100 stpes')
    plt.plot(moving_average(losses, 100),linewidth=0.2)
    plt.show()
# if __name__ == '__main__':
# Training DQN in PongNoFrameskip-v4
env = make_atari('PongNoFrameskip-v4')
env = wrap_deepmind(env, scale = False, frame_stack=True)
gamma = 0.99
epsilon_max = 1
epsilon_min = 0.01
eps_decay = 30000
frames = 1000000
USE_CUDA = True
learning_rate = 2e-4
max_buff = 100000
update_tar_interval = 1000
batch_size = 32
print_interval = 1000
log_interval = 1000
learning_start = 10000
win_reward = 18     # Pong-v4
win_break = True
action_space = env.action_space
action_dim = env.action_space.n
state_dim = env.observation_space.shape[0]
state_channel = env.observation_space.shape[2]
agent = DDQNAgent(in_channels = state_channel, action_space= action_space, USE_CUDA = USE_CUDA, lr = learning_rate)
#frame = env.reset()
episode_reward = 0
all_rewards = []
losses = []
episode_num = 0
is_win = False
# tensorboard
summary_writer = SummaryWriter(log_dir = "DDQN", comment= "good_makeatari")
# e-greedy decay
epsilon_by_frame = lambda frame_idx: epsilon_min + (epsilon_max - epsilon_min) * math.exp(
            -1. * frame_idx / eps_decay)
# plt.plot([epsilon_by_frame(i) for i in range(10000)])
for i in range(frames):
    epsilon = epsilon_by_frame(i)
    #state_tensor = agent.observe(frame)
    #action = agent.act(state_tensor, epsilon)
    #next_frame, reward, done, _ = env.step(action)
    #episode_reward += reward
    #agent.memory_buffer.push(frame, action, reward, next_frame, done)
    #frame = next_frame
    loss = 0
    if agent.memory_buffer.size() >= learning_start:
        loss = agent.learn_from_experience(batch_size)
        losses.append(loss)
    if i % print_interval == 0:
        print("frames: %5d, reward: %5f, loss: %4f, epsilon: %5f, episode: %4d" % (i, np.mean(all_rewards[-10:]), loss, epsilon, episode_num))
        summary_writer.add_scalar("Temporal Difference Loss", loss, i)
        summary_writer.add_scalar("Mean Reward", np.mean(all_rewards[-10:]), i)
        summary_writer.add_scalar("Epsilon", epsilon, i)
    if iQN_dict.pth.tar")
plot_training(i, all_rewards, losses)

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
15天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
18天前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
78 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
23天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
1月前
|
机器学习/深度学习 算法
强化学习之父Richard Sutton给出一个简单思路,大幅增强所有RL算法
Richard Sutton领导的团队提出了一种称为“奖励中心化”的方法,通过从观察到的奖励中减去其经验平均值,使奖励更加集中,显著提高了强化学习算法的性能。该方法在解决持续性问题时表现出色,尤其是在折扣因子接近1的情况下。论文地址:https://arxiv.org/pdf/2405.09999
78 15
|
1月前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
100 3
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
2月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法与应用
探索人工智能中的强化学习:原理、算法与应用
|
2月前
|
搜索推荐 算法 C语言
【排序算法】八大排序(下)(c语言实现)(附源码)
本文继续学习并实现了八大排序算法中的后四种:堆排序、快速排序、归并排序和计数排序。详细介绍了每种排序算法的原理、步骤和代码实现,并通过测试数据展示了它们的性能表现。堆排序利用堆的特性进行排序,快速排序通过递归和多种划分方法实现高效排序,归并排序通过分治法将问题分解后再合并,计数排序则通过统计每个元素的出现次数实现非比较排序。最后,文章还对比了这些排序算法在处理一百万个整形数据时的运行时间,帮助读者了解不同算法的优劣。
170 7
|
2月前
|
搜索推荐 算法 C语言
【排序算法】八大排序(上)(c语言实现)(附源码)
本文介绍了四种常见的排序算法:冒泡排序、选择排序、插入排序和希尔排序。通过具体的代码实现和测试数据,详细解释了每种算法的工作原理和性能特点。冒泡排序通过不断交换相邻元素来排序,选择排序通过选择最小元素进行交换,插入排序通过逐步插入元素到已排序部分,而希尔排序则是插入排序的改进版,通过预排序使数据更接近有序,从而提高效率。文章最后总结了这四种算法的空间和时间复杂度,以及它们的稳定性。
140 8
|
2月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法及应用
探索人工智能中的强化学习:原理、算法及应用

热门文章

最新文章