☆打卡算法☆LeetCode 174. 地下城游戏 算法解析

简介: ☆打卡算法☆LeetCode 174. 地下城游戏 算法解析

大家好,我是小魔龙,Unity3D软件工程师,VR、AR,虚拟仿真方向,不定时更新软件开发技巧,生活感悟,觉得有用记得一键三连哦。

一、题目

1、算法题目

“编写一个函数,来计算骑士能够拯救公主所需的最低初始健康点数。”

2、题目描述

一些恶魔抓住了公主(P)并将她关在了地下城的右下角。地下城是由 M x N 个房间组成的二维网格。我们英勇的骑士(K)最初被安置在左上角的房间里,他必须穿过地下城并通过对抗恶魔来拯救公主。

骑士的初始健康点数为一个正整数。如果他的健康点数在某一时刻降至 0 或以下,他会立即死亡。

有些房间由恶魔守卫,因此骑士在进入这些房间时会失去健康点数(若房间里的值为负整数,则表示骑士将损失健康点数);其他房间要么是空的(房间里的值为 0),要么包含增加骑士健康点数的魔法球(若房间里的值为正整数,则表示骑士将增加健康点数)。

为了尽快到达公主,骑士决定每次只向右或向下移动一步。

编写一个函数来计算确保骑士能够拯救到公主所需的最低初始健康点数。

例如,考虑到如下布局的地下城,如果骑士遵循最佳路径 右 -> 右 -> 下 -> 下,则骑士的初始健康点数至少为 7。

1702379751069.jpg

说明:

  • 骑士的健康点数没有上限。
  • 任何房间都可能对骑士的健康点数造成威胁,也可能增加骑士的健康点数,包括骑士进入的左上角房间以及公主被监禁的右下角房间。
示例 1:
示例 2:

二、解题

1、思路分析

这种寻找路径的题目,可以想到的就是使用动态规划,动态规划的重点就是找到子结构的规律。

首先,这是一个M * N的网格,每次只能向右或者向下移动一步,然后移动的时候要确保骑士在房间至少要有一点健康点数,直到骑士救出公主,也就是找一个可行的最小值路线。

提取一下有效信息:

  • 骑士在每个房间至少有一点健康点,这样就不会死亡
  • 每次移动只能向右或向下移动一步
  • 确保骑士救出公主,遍历路线,找到最小值路线

这里有两种推导方式,一种是从前往后推,但是并不知道一开始的值是多少,假设开始设置了一个值,在推导过程中发现不满足条件就需要修改开始的值,这样很麻烦。

所以可以从后往前推,每个房间找到最优解,到起点就是要求的路线。

就比如这个例子:

1702379787791.jpg

从右下出发,那么往左走(5),往上走(2):

1702379796741.jpg

那么很显然向上是最优解,那么向上后,再继续往左走(2),或往上走(-1):

1702379810800.jpg

那么显然往上走是最优解,然后骑士健康点数要大于等于1,那么往上走的点数其实是1:

1702379821702.jpg

这样是不是就求出了一条可行的最优解了。

整理一下这个公式,对于这条路径dp[i][j]来说,只要求出dp[i][j+1]和dp[i+1][j]的最小值minn,当前格式的值为dungeon(i,j),那么在坐标(i,j)的初始值只要达到minn-dungeon(i,j)即可,同时,初始值还必须大于等于1,那么方程:

dp[i][j] = max(min(dp[i+1][j],dp[i][j+1])-dungeon(i,j),1)

边界条件是当 i = n-1或者 j=m -1时,dp[i][j]转移需要用到dp[i][j+1]和dp[i+1][j]中有无效值,因此代码实现中给无效值赋值为极大值。

2、代码实现

代码参考:

class Solution {
    public int calculateMinimumHP(int[][] dungeon) {
        int n = dungeon.length, m = dungeon[0].length;
        int[][] dp = new int[n + 1][m + 1];
        for (int i = 0; i <= n; ++i) {
            Arrays.fill(dp[i], Integer.MAX_VALUE);
        }
        dp[n][m - 1] = dp[n - 1][m] = 1;
        for (int i = n - 1; i >= 0; --i) {
            for (int j = m - 1; j >= 0; --j) {
                int minn = Math.min(dp[i + 1][j], dp[i][j + 1]);
                dp[i][j] = Math.max(minn - dungeon[i][j], 1);
            }
        }
        return dp[0][0];
    }
}

1702379840533.jpg

3、时间复杂度

时间复杂度:O(N X M)

其中N,M是给定矩阵的长宽。

空间复杂度:O(N X M)

其中N,M是给定矩阵的长宽。

三、总结

之所以要从终点向起点出发,是因为从起点到终点破坏了无后效性。

什么是无后效性,就是无法直接确定这条路径是否是唯一解,因为有两个重要程度相同的参数同时影响后续的决策。

这两个参数分别是:剩余血量与到达当前点所需要的最小初始化血量共同影响着后面一步的结果。

相关文章
|
2月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
8月前
|
算法 Go 索引
【LeetCode 热题100】45:跳跃游戏 II(详细解析)(Go语言版)
本文详细解析了力扣第45题“跳跃游戏II”的三种解法:贪心算法、动态规划和反向贪心。贪心算法通过选择每一步能跳到的最远位置,实现O(n)时间复杂度与O(1)空间复杂度,是面试首选;动态规划以自底向上的方式构建状态转移方程,适合初学者理解但效率较低;反向贪心从终点逆向寻找最优跳点,逻辑清晰但性能欠佳。文章对比了各方法的优劣,并提供了Go语言代码实现,助你掌握最小跳跃次数问题的核心技巧。
340 15
|
10月前
|
存储 算法 安全
.NET 平台 SM2 国密算法 License 证书生成深度解析
授权证书文件的后缀通常取决于其编码格式和具体用途。本文档通过一个示例程序展示了如何在 .NET 平台上使用国密 SM2 算法生成和验证许可证(License)文件。该示例不仅详细演示了 SM2 国密算法的实际应用场景,还提供了关于如何高效处理大规模许可证文件生成任务的技术参考。通过对不同并发策略的性能测试,开发者可以更好地理解如何优化许可证生成流程,以满足高并发和大数据量的需求。 希望这段描述更清晰地传达了程序的功能和技术亮点。
1180 14
.NET 平台 SM2 国密算法 License 证书生成深度解析
|
8月前
|
机器学习/深度学习 存储 算法
【LeetCode 热题100】347:前 K 个高频元素(详细解析)(Go语言版)
这篇文章详细解析了力扣热题 347——前 K 个高频元素的三种解法:哈希表+小顶堆、哈希表+快速排序和哈希表+桶排序。每种方法都附有清晰的思路讲解和 Go 语言代码实现。小顶堆方法时间复杂度为 O(n log k),适合处理大规模数据;快速排序方法时间复杂度为 O(n log n),适用于数据量较小的场景;桶排序方法在特定条件下能达到线性时间复杂度 O(n)。文章通过对比分析,帮助读者根据实际需求选择最优解法,并提供了完整的代码示例,是一篇非常实用的算法学习资料。
510 90
|
9月前
|
存储 自然语言处理 算法
【LeetCode 热题100】208:实现 Trie (前缀树)(详细解析)(Go语言版)
本文详细解析了力扣热题 208——实现 Trie(前缀树)。Trie 是一种高效的树形数据结构,用于存储和检索字符串集合。文章通过插入、查找和前缀匹配三个核心操作,结合 Go 语言实现代码,清晰展示了 Trie 的工作原理。时间复杂度为 O(m),空间复杂度也为 O(m),其中 m 为字符串长度。此外,还探讨了 Trie 的变种及应用场景,如自动补全和词典查找等。适合初学者深入了解 Trie 结构及其实际用途。
295 14
|
8月前
|
算法 Go
【LeetCode 热题100】55:跳跃游戏(详细解析)(Go语言版)
本篇解析详细讲解了 LeetCode 热题 55——跳跃游戏(Jump Game)。通过判断是否能从数组起点跳至终点,介绍了两种高效解法:贪心算法和反向思维。贪心法通过维护最远可达位置 `maxReach` 实现一次遍历,时间复杂度 O(n),空间复杂度 O(1);反向法则从终点回溯,判断是否可到达起点。两者均简洁高效,适合面试使用。延伸题目如 LeetCode 45 进一步提升挑战。
253 7
|
9月前
|
监控 算法 安全
基于 C# 的内网行为管理软件入侵检测算法解析
当下数字化办公环境中,内网行为管理软件已成为企业维护网络安全、提高办公效率的关键工具。它宛如一位恪尽职守的网络守护者,持续监控内网中的各类活动,以确保数据安全及网络稳定。在其诸多功能实现的背后,先进的数据结构与算法发挥着至关重要的作用。本文将深入探究一种应用于内网行为管理软件的 C# 算法 —— 基于二叉搜索树的入侵检测算法,并借助具体代码例程予以解析。
155 4
|
9月前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
9月前
|
存储 监控 算法
关于员工上网监控系统中 PHP 关联数组算法的学术解析
在当代企业管理中,员工上网监控系统是维护信息安全和提升工作效率的关键工具。PHP 中的关联数组凭借其灵活的键值对存储方式,在记录员工网络活动、管理访问规则及分析上网行为等方面发挥重要作用。通过关联数组,系统能高效记录每位员工的上网历史,设定网站访问权限,并统计不同类型的网站访问频率,帮助企业洞察员工上网模式,发现潜在问题并采取相应管理措施,从而保障信息安全和提高工作效率。
174 7
|
10月前
|
机器学习/深度学习 自然语言处理 算法
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
生成式 AI 大语言模型(LLMs)核心算法及源码解析:预训练篇
2646 1

推荐镜像

更多
  • DNS