使用C语言操作kafka ---- librdkafka

本文涉及的产品
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
云原生网关 MSE Higress,422元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: 使用C语言操作kafka ---- librdkafka

1 安装librdkafka


git clone https://github.com/edenhill/librdkafka.git


cd librdkafka


git checkout v1.7.0


./configure


make


sudo make install


sudo ldconfig


在librdkafka的examples目录下会有示例程序。比如consumer的启动需要下列参数

./consumer <broker> <group.id> <topic1> <topic2>..

指定broker、group id、topic(可以订阅多个)。示例:

指定broker、group id、topic(可以订阅多个)。示例:

缩略语介绍:

1.png

2 开启kafka相关服务


2.1 启动zookeeper


启动zookeeper可以通过下面的脚本来启动zookeeper服务,当然,也可以自己独立搭建zookeeper的集群来实现。这里我们直接使用kafka自带的zookeeper。

cd bin/
# 前台运行:
sh zookeeper-server-start.sh  ../config/zookeeper.properties
# 后台运行:
sh zookeeper-server-start.sh -daemon ../config/zookeeper.properties

可以通过命令lsof -i:2181 查看zookeeper是否启动成功。

$ lsof -i:2181
COMMAND   PID USER   FD   TYPE DEVICE SIZE/OFF NODE NAME
java    74930  fly   96u  IPv6 734467      0t0  TCP *:2181 (LISTEN)

2.2 启动Kafka


启动kafka(kafka安装路径的bin目录下执行),默认启动端口9092。

sh kafka-server-start.sh -daemon ../config/server.properties

2.3 创建topic

sh kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic test

参数说明:


–create 是创建主题的的动作指令。


–zookeeper 指定kafka所连接的zookeeper服务地址。


–replicator-factor 指定了副本因子(即副本数量); 表示该topic需要在不同的broker中保存几份,这里设置成1,表示在两个broker中保存两份Partitions分区数。


–partitions 指定分区个数;多通道,类似车道。


–topic 指定所要创建主题的名称,比如test。


3 c语言操作kafka的范例


3.1 消费者


在librdkafka\examples下有consumer.c文件,该文件是一个c语言操作kafka的代码范例,内容如下。

/**
 * Simple high-level balanced Apache Kafka consumer
 * using the Kafka driver from librdkafka
 * (https://github.com/edenhill/librdkafka)
 */
#include <stdio.h>
#include <signal.h>
#include <string.h>
#include <ctype.h>
/* Typical include path would be <librdkafka/rdkafka.h>, but this program
 * is builtin from within the librdkafka source tree and thus differs. */
//#include <librdkafka/rdkafka.h>
#include "rdkafka.h"
static volatile sig_atomic_t run = 1;
/**
 * @brief Signal termination of program
 */
static void stop (int sig) {
        run = 0;
}
/**
 * @returns 1 if all bytes are printable, else 0.
 */
static int is_printable (const char *buf, size_t size) {
        size_t i;
        for (i = 0 ; i < size ; i++)
                if (!isprint((int)buf[i]))
                        return 0;
        return 1;
}
int main (int argc, char **argv) {
        rd_kafka_t *rk;          /* Consumer instance handle */
        rd_kafka_conf_t *conf;   /* Temporary configuration object */
        rd_kafka_resp_err_t err; /* librdkafka API error code */
        char errstr[512];        /* librdkafka API error reporting buffer */
        const char *brokers;     /* Argument: broker list */
        const char *groupid;     /* Argument: Consumer group id */
        char **topics;           /* Argument: list of topics to subscribe to */
        int topic_cnt;           /* Number of topics to subscribe to */
        rd_kafka_topic_partition_list_t *subscription; /* Subscribed topics */
        int i;
        /*
         * Argument validation
         */
        if (argc < 4) {
                fprintf(stderr,
                        "%% Usage: "
                        "%s <broker> <group.id> <topic1> <topic2>..\n",
                        argv[0]);
                return 1;
        }
        brokers   = argv[1];
        groupid   = argv[2];
        topics    = &argv[3];
        topic_cnt = argc - 3;
        /*
         * Create Kafka client configuration place-holder
         */
        conf = rd_kafka_conf_new(); // 创建配置文件
        /* Set bootstrap broker(s) as a comma-separated list of
         * host or host:port (default port 9092).
         * librdkafka will use the bootstrap brokers to acquire the full
         * set of brokers from the cluster. */
        if (rd_kafka_conf_set(conf, "bootstrap.servers", brokers,
                              errstr, sizeof(errstr)) != RD_KAFKA_CONF_OK) {
                fprintf(stderr, "%s\n", errstr);
                rd_kafka_conf_destroy(conf);
                return 1;
        }
        /* Set the consumer group id.
         * All consumers sharing the same group id will join the same
         * group, and the subscribed topic' partitions will be assigned
         * according to the partition.assignment.strategy
         * (consumer config property) to the consumers in the group. */
        if (rd_kafka_conf_set(conf, "group.id", groupid,
                              errstr, sizeof(errstr)) != RD_KAFKA_CONF_OK) {
                fprintf(stderr, "%s\n", errstr);
                rd_kafka_conf_destroy(conf);
                return 1;
        }
        /* If there is no previously committed offset for a partition
         * the auto.offset.reset strategy will be used to decide where
         * in the partition to start fetching messages.
         * By setting this to earliest the consumer will read all messages
         * in the partition if there was no previously committed offset. */
        if (rd_kafka_conf_set(conf, "auto.offset.reset", "earliest",
                              errstr, sizeof(errstr)) != RD_KAFKA_CONF_OK) {
                fprintf(stderr, "%s\n", errstr);
                rd_kafka_conf_destroy(conf);
                return 1;
        }
        /*
         * Create consumer instance.
         *
         * NOTE: rd_kafka_new() takes ownership of the conf object
         *       and the application must not reference it again after
         *       this call.
         */
         // 创建一个kafka消费者
        rk = rd_kafka_new(RD_KAFKA_CONSUMER, conf, errstr, sizeof(errstr));
        if (!rk) {
                fprintf(stderr,
                        "%% Failed to create new consumer: %s\n", errstr);
                return 1;
        }
        conf = NULL; /* Configuration object is now owned, and freed,
                      * by the rd_kafka_t instance. */
        /* Redirect all messages from per-partition queues to
         * the main queue so that messages can be consumed with one
         * call from all assigned partitions.
         *
         * The alternative is to poll the main queue (for events)
         * and each partition queue separately, which requires setting
         * up a rebalance callback and keeping track of the assignment:
         * but that is more complex and typically not recommended. */
        rd_kafka_poll_set_consumer(rk);// poll机制,设置消费者实例到poll中
        /* Convert the list of topics to a format suitable for librdkafka */
        // 创建主题分区列表
        subscription = rd_kafka_topic_partition_list_new(topic_cnt);
        for (i = 0 ; i < topic_cnt ; i++)
                rd_kafka_topic_partition_list_add(subscription,
                                                  topics[i],
                                                  /* the partition is ignored
                                                   * by subscribe() */
                                                  RD_KAFKA_PARTITION_UA);
        /* Subscribe to the list of topics */
        err = rd_kafka_subscribe(rk, subscription);
        if (err) {
                fprintf(stderr,
                        "%% Failed to subscribe to %d topics: %s\n",
                        subscription->cnt, rd_kafka_err2str(err));
                rd_kafka_topic_partition_list_destroy(subscription);
                rd_kafka_destroy(rk);
                return 1;
        }
        fprintf(stderr,
                "%% Subscribed to %d topic(s), "
                "waiting for rebalance and messages...\n",
                subscription->cnt);
        rd_kafka_topic_partition_list_destroy(subscription);
        /* Signal handler for clean shutdown */
        signal(SIGINT, stop);
        /* Subscribing to topics will trigger a group rebalance
         * which may take some time to finish, but there is no need
         * for the application to handle this idle period in a special way
         * since a rebalance may happen at any time.
         * Start polling for messages. */
        while (run) {
                rd_kafka_message_t *rkm;
                rkm = rd_kafka_consumer_poll(rk, 100);
                if (!rkm)
                        continue; /* Timeout: no message within 100ms,
                                   *  try again. This short timeout allows
                                   *  checking for `run` at frequent intervals.
                                   */
                /* consumer_poll() will return either a proper message
                 * or a consumer error (rkm->err is set). */
                if (rkm->err) {
                        /* Consumer errors are generally to be considered
                         * informational as the consumer will automatically
                         * try to recover from all types of errors. */
                        fprintf(stderr,
                                "%% Consumer error: %s\n",
                                rd_kafka_message_errstr(rkm));
                        rd_kafka_message_destroy(rkm);
                        continue;
                }
                /* Proper message. */
                printf("Message on %s [%"PRId32"] at offset %"PRId64":\n",
                       rd_kafka_topic_name(rkm->rkt), rkm->partition,
                       rkm->offset);
                /* Print the message key. */
                if (rkm->key && is_printable(rkm->key, rkm->key_len))
                        printf(" Key: %.*s\n",
                               (int)rkm->key_len, (const char *)rkm->key);
                else if (rkm->key)
                        printf(" Key: (%d bytes)\n", (int)rkm->key_len);
                /* Print the message value/payload. */
                if (rkm->payload && is_printable(rkm->payload, rkm->len))
                        printf(" Value: %.*s\n",
                               (int)rkm->len, (const char *)rkm->payload);
                else if (rkm->payload)
                        printf(" Value: (%d bytes)\n", (int)rkm->len);
                rd_kafka_message_destroy(rkm);
        }
        /* Close the consumer: commit final offsets and leave the group. */
        fprintf(stderr, "%% Closing consumer\n");
        rd_kafka_consumer_close(rk);
        /* Destroy the consumer */
        rd_kafka_destroy(rk);
        return 0;
}

2.png

3.2 生产者


在librdkafka\examples下有producer.c文件,该文件是一个c语言操作kafka的代码范例,内容如下。

/**
 * Simple Apache Kafka producer
 * using the Kafka driver from librdkafka
 * (https://github.com/edenhill/librdkafka)
 */
#include <stdio.h>
#include <signal.h>
#include <string.h>
/* Typical include path would be <librdkafka/rdkafka.h>, but this program
 * is builtin from within the librdkafka source tree and thus differs. */
#include "rdkafka.h"
static volatile sig_atomic_t run = 1;
/**
 * @brief Signal termination of program
 */
static void stop (int sig) {
        run = 0;
        fclose(stdin); /* abort fgets() */
}
/**
 * @brief Message delivery report callback.
 *
 * This callback is called exactly once per message, indicating if
 * the message was succesfully delivered
 * (rkmessage->err == RD_KAFKA_RESP_ERR_NO_ERROR) or permanently
 * failed delivery (rkmessage->err != RD_KAFKA_RESP_ERR_NO_ERROR).
 *
 * The callback is triggered from rd_kafka_poll() and executes on
 * the application's thread.
 */
static void dr_msg_cb (rd_kafka_t *rk,
                       const rd_kafka_message_t *rkmessage, void *opaque) {
        if (rkmessage->err)
                fprintf(stderr, "%% Message delivery failed: %s\n",
                        rd_kafka_err2str(rkmessage->err));
        else
                fprintf(stderr,
                        "%% Message delivered (%zd bytes, "
                        "partition %"PRId32")\n",
                        rkmessage->len, rkmessage->partition);
        /* The rkmessage is destroyed automatically by librdkafka */
}
int main (int argc, char **argv) {
        rd_kafka_t *rk;         /* Producer instance handle */
        rd_kafka_conf_t *conf;  /* Temporary configuration object */
        char errstr[512];       /* librdkafka API error reporting buffer */
        char buf[512];          /* Message value temporary buffer */
        const char *brokers;    /* Argument: broker list */
        const char *topic;      /* Argument: topic to produce to */
        /*
         * Argument validation
         */
        if (argc != 3) {
                fprintf(stderr, "%% Usage: %s <broker> <topic>\n", argv[0]);
                return 1;
        }
        brokers = argv[1];
        topic   = argv[2];
        /*
         * Create Kafka client configuration place-holder
         */
        conf = rd_kafka_conf_new();
        /* Set bootstrap broker(s) as a comma-separated list of
         * host or host:port (default port 9092).
         * librdkafka will use the bootstrap brokers to acquire the full
         * set of brokers from the cluster. */
        if (rd_kafka_conf_set(conf, "bootstrap.servers", brokers,
                              errstr, sizeof(errstr)) != RD_KAFKA_CONF_OK) {
                fprintf(stderr, "%s\n", errstr);
                return 1;
        }
        /* Set the delivery report callback.
         * This callback will be called once per message to inform
         * the application if delivery succeeded or failed.
         * See dr_msg_cb() above.
         * The callback is only triggered from rd_kafka_poll() and
         * rd_kafka_flush(). */
        rd_kafka_conf_set_dr_msg_cb(conf, dr_msg_cb);
        /*
         * Create producer instance.
         *
         * NOTE: rd_kafka_new() takes ownership of the conf object
         *       and the application must not reference it again after
         *       this call.
         */
        rk = rd_kafka_new(RD_KAFKA_PRODUCER, conf, errstr, sizeof(errstr));
        if (!rk) {
                fprintf(stderr,
                        "%% Failed to create new producer: %s\n", errstr);
                return 1;
        }
        /* Signal handler for clean shutdown */
        signal(SIGINT, stop);
        fprintf(stderr,
                "%% Type some text and hit enter to produce message\n"
                "%% Or just hit enter to only serve delivery reports\n"
                "%% Press Ctrl-C or Ctrl-D to exit\n");
        while (run && fgets(buf, sizeof(buf), stdin)) {
                size_t len = strlen(buf);
                rd_kafka_resp_err_t err;
                if (buf[len-1] == '\n') /* Remove newline */
                        buf[--len] = '\0';
                if (len == 0) {
                        /* Empty line: only serve delivery reports */
                        rd_kafka_poll(rk, 0/*non-blocking */);
                        continue;
                }
                /*
                 * Send/Produce message.
                 * This is an asynchronous call, on success it will only
                 * enqueue the message on the internal producer queue.
                 * The actual delivery attempts to the broker are handled
                 * by background threads.
                 * The previously registered delivery report callback
                 * (dr_msg_cb) is used to signal back to the application
                 * when the message has been delivered (or failed).
                 */
        retry:
                err = rd_kafka_producev(
                        /* Producer handle */
                        rk,
                        /* Topic name */
                        RD_KAFKA_V_TOPIC(topic),
                        /* Make a copy of the payload. */
                        RD_KAFKA_V_MSGFLAGS(RD_KAFKA_MSG_F_COPY),
                        /* Message value and length */
                        RD_KAFKA_V_VALUE(buf, len),
                        /* Per-Message opaque, provided in
                         * delivery report callback as
                         * msg_opaque. */
                        RD_KAFKA_V_OPAQUE(NULL),
                        /* End sentinel */
                        RD_KAFKA_V_END);
                if (err) {
                        /*
                         * Failed to *enqueue* message for producing.
                         */
                        fprintf(stderr,
                                "%% Failed to produce to topic %s: %s\n",
                                topic, rd_kafka_err2str(err));
                        if (err == RD_KAFKA_RESP_ERR__QUEUE_FULL) {
                                /* If the internal queue is full, wait for
                                 * messages to be delivered and then retry.
                                 * The internal queue represents both
                                 * messages to be sent and messages that have
                                 * been sent or failed, awaiting their
                                 * delivery report callback to be called.
                                 *
                                 * The internal queue is limited by the
                                 * configuration property
                                 * queue.buffering.max.messages */
                                rd_kafka_poll(rk, 1000/*block for max 1000ms*/);
                                goto retry;
                        }
                } else {
                        fprintf(stderr, "%% Enqueued message (%zd bytes) "
                                "for topic %s\n",
                                len, topic);
                }
                /* A producer application should continually serve
                 * the delivery report queue by calling rd_kafka_poll()
                 * at frequent intervals.
                 * Either put the poll call in your main loop, or in a
                 * dedicated thread, or call it after every
                 * rd_kafka_produce() call.
                 * Just make sure that rd_kafka_poll() is still called
                 * during periods where you are not producing any messages
                 * to make sure previously produced messages have their
                 * delivery report callback served (and any other callbacks
                 * you register). */
                rd_kafka_poll(rk, 0/*non-blocking*/);
        }
        /* Wait for final messages to be delivered or fail.
         * rd_kafka_flush() is an abstraction over rd_kafka_poll() which
         * waits for all messages to be delivered. */
        fprintf(stderr, "%% Flushing final messages..\n");
        rd_kafka_flush(rk, 10*1000 /* wait for max 10 seconds */);
        /* If the output queue is still not empty there is an issue
         * with producing messages to the clusters. */
        if (rd_kafka_outq_len(rk) > 0)
                fprintf(stderr, "%% %d message(s) were not delivered\n",
                        rd_kafka_outq_len(rk));
        /* Destroy the producer instance */
        rd_kafka_destroy(rk);
        return 0;
}

3.3 生产者和消费者的交互


(1)启动消费者。


./consumer localhost:9092 0 test


1


显示:


% Subscribed to 1 topic(s), waiting for rebalance and messages...


1


(2)启动生产者。


./producer localhost:9092 test

3.png

总结


  1. 一个分区只能被一个消费者读取。如果一个topic只有一个分区,多个消费者读取时只有一个消费者能读到数据;单个分区开启多个消费者去读取数据是没有意义的。
相关文章
|
7月前
|
消息中间件 Java 关系型数据库
实时计算 Flink版操作报错合集之从 PostgreSQL 读取数据并写入 Kafka 时,遇到 "initial slot snapshot too large" 的错误,该怎么办
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
1032 0
|
6月前
|
消息中间件 Kafka 数据处理
实时计算 Flink版操作报错合集之使用kafka connector时,报错:java.lang.ClassNotFoundException,是什么原因
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
6月前
|
语音技术 C语言 Windows
语音识别------ffmpeg的使用01,ffmpeg的安装,会做PPT很好,ffmpeg不具备直接使用,只可以操作解码数据,ffmpeg用C语言写的,得学C语言,ffmpeg的安装
语音识别------ffmpeg的使用01,ffmpeg的安装,会做PPT很好,ffmpeg不具备直接使用,只可以操作解码数据,ffmpeg用C语言写的,得学C语言,ffmpeg的安装
|
7月前
|
消息中间件 Java Kafka
kafka 磁盘扩容与数据均衡操作代码
Kafka 的磁盘扩容和数据均衡是与保证Kafka集群可用性和性能相关的两个重要方面。在 Kafka 中,分区数据的存储和平衡对集群的运行至关重要。以下是有关Kafka磁盘扩容和数据均衡的一些建议
75 1
|
7月前
|
消息中间件 Kafka
KafKa脚本操作
KafKa脚本操作
|
8月前
|
消息中间件 关系型数据库 MySQL
实时计算 Flink版操作报错合集之遇到报错:Apache Kafka Connect错误如何解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
252 5
|
8月前
|
消息中间件 Kafka 数据库连接
实时计算 Flink版操作报错合集之无法将消费到的偏移量提交到Kafka如何解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
154 3
|
7月前
|
C语言
C语言---函数--数组---创建一个整形数组,完成对数组的3种操作
C语言---函数--数组---创建一个整形数组,完成对数组的3种操作
|
8月前
|
网络安全 流计算 Python
实时计算 Flink版操作报错合集之Flink sql-client 针对kafka的protobuf格式数据建表,报错:java.lang.ClassNotFoundException 如何解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
152 1
|
8月前
|
消息中间件 关系型数据库 网络安全
实时计算 Flink版操作报错合集之Flink sql-client 针对kafka的protobuf格式数据建表,报错:java.lang.ClassNotFoundException 如何解决
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
256 1