基于深度学习网络的施工人员安全帽佩戴检测matlab仿真

简介: 基于深度学习网络的施工人员安全帽佩戴检测matlab仿真

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
基于深度学习网络的施工人员安全帽佩戴检测是一种先进的技术,它利用深度学习算法对图像或视频进行分析,以检测施工人员是否佩戴了安全帽。基于深度学习网络的施工人员安全帽佩戴检测方法的基本原理是:利用深度学习算法对大量的带标签的图像或视频进行训练和学习,让网络学习到区分施工人员是否佩戴安全帽的能力。在训练过程中,输入的图像或视频会被分割成若干个小的区域或像素块,网络会通过对这些区域或像素块的特征进行分析,自动识别出施工人员的头部以及安全帽的特征。一旦训练完成,该网络就可以对新的图像或视频进行自动检测,判断施工人员是否佩戴了安全帽。

     基于深度学习的安全帽佩戴检测算法的核心是神经网络。下面介绍一种常见的神经网络——卷积神经网络(Convolutional Neural Network,CNN)。

     CNN由多个卷积层、池化层和全连接层组成。在卷积层中,神经网络会对输入图像进行卷积运算,提取出图像中的特征。这个过程可以用以下公式表示:

y[i,j] = f(b[i,j] + Σ((i,j)+w[i',j']*x[i-i'+1,j-j'+1]))

     其中,y[i,j]表示卷积结果中第i行第j列的元素值;b[i,j]表示偏置项;w[i',j']表示卷积核中第i'行第j'列的元素值;x[i-i'+1,j-j'+1]表示输入图像中第i-i'+1行第j-j'+1列的元素值;Σ表示对所有满足条件(i',j')=(i,j)的元素进行求和。

     池化层则是对卷积层的输出进行降采样,减少数据的复杂度,避免过拟合。常用的池化函数有最大池化和平均池化。最大池化就是取一个滑动窗口中的最大值,平均池化就是取一个滑动窗口中的平均值。

     最后是全连接层,它将前面的所有层的结果进行整合,输出一个或多个结果。在安全帽佩戴检测中,全连接层的输出就是每个像素点是否属于安全帽佩戴区域。

    基于深度学习网络的施工人员安全帽佩戴检测方法是一种高效、准确的方法,可以大大提高施工安全的监控效率,减少因未佩戴安全帽而引发的安全事故。通过训练深度神经网络对图像的特征进行自动提取和学习,可以在很大程度上提高算法的准确性和泛化能力,实现对施工场景的智能化监控和管理。

4.部分核心程序

```In_layer_Size = [224 224 3];
imgPath = 'images/'; % 图像库路径
imgDir = dir([imgPath '*.png']); % 遍历所有jpg格式文件
cnt = 0;
for i = 1:length(imgDir) % 遍历结构体就可以一一处理图片了
i
if mod(i,8)==1
figure
end
cnt = cnt+1;
subplot(2,4,cnt);
img = imread([imgPath imgDir(i).name]); %读取每张图片
I = imresize(img,In_layer_Size(1:2));
[bboxes,scores] = detect(detector,I);
%将临近的区域合并
bboxes2=[];

bboxes2=[mean(bboxes(:,1)),mean(bboxes(:,2)),mean(bboxes(:,3)),mean(bboxes(:,4))];

PIX1   = mean2(mean2(I(bboxes2(2):bboxes2(2)+bboxes2(4)/2,bboxes2(1):bboxes2(1)+bboxes2(3),1)));
PIX2   = mean2(mean2(I(bboxes2(2):bboxes2(2)+bboxes2(4)/2,bboxes2(1):bboxes2(1)+bboxes2(3),2)));
PIX3   = mean2(mean2(I(bboxes2(2):bboxes2(2)+bboxes2(4)/2,bboxes2(1):bboxes2(1)+bboxes2(3),3)));
PIX    = [PIX1,PIX2,PIX3] ;
[Vs,Is] = max(scores);
if isempty(bboxes2)==0
I1              = insertObjectAnnotation(I,'rectangle',bboxes2,Vs);
else
I1              = I;
Vs              = 0;
end
imshow(I1)

if PIX(1)>PIX(3) & PIX(2)>PIX(3) & PIX(1)>100  & PIX(2)>100 
   title(['佩戴头盔,置信度:',num2str(Vs)]);
else
   title(['未佩戴头盔,置信度:',num2str(Vs)]);
end
if cnt==8
   cnt=0;
end

end

```

相关文章
|
4天前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
28 5
|
7天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
63 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
4天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
7天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
27 3
|
16天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
42 8
|
13天前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
18 1
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
7天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。