基于LUT查找表方法的图像gamma校正算法FPGA实现,包括tb测试文件和MATLAB辅助验证

简介: 基于LUT查找表方法的图像gamma校正算法FPGA实现,包括tb测试文件和MATLAB辅助验证

1.算法运行效果图预览

9e9c1f63d0d0561bb76944f7c0ec3920_82780907_202311282302190273355821_Expires=1701184339&Signature=YRaV0cipfX%2FAAIM3%2FQvMruoF1F8%3D&domain=8.jpeg

将gamma=2.2和gamma=1/2.2的数据分别导入到matlab进行对比:

b133440f8c906c44e07b72cf73d8490a_82780907_202311282302280366338912_Expires=1701184348&Signature=Sf3jYO5L%2BtKVQ5Ipa4R%2FULrCaVc%3D&domain=8.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
基于LUT查找表方法的图像gamma校正算法是一种用于改善图像显示效果的技术,它通过对图像像素的灰度值进行非线性变换,使得图像在显示设备上的表现更接近人眼的视觉特性。

   gamma校正算法的核心思想是根据人眼的视觉特性对图像像素的灰度值进行非线性变换。人眼对图像的亮度感知并不是线性的,而是对暗部和亮部的敏感度不同,对暗部的敏感度更高。因此,gamma校正算法通过对暗部像素进行较大的灰度值调整,对亮部像素进行较小的灰度值调整,使得图像在显示设备上的表现更接近人眼的视觉特性。

gamma校正算法的数学公式如下:

O = 255/255^(γ)*Image^(γ)

   其中,I表示输入像素的灰度值,O表示输出像素的灰度值,γ表示gamma值,通常取值为2.2。该公式的含义是,将输入像素的灰度值I进行γ次方运算,得到输出像素的灰度值O。

    在具体实现中,为了加快运算速度,通常会使用查找表(LUT)来存储预计算的结果。假设输入像素的灰度值范围为0~255,则可以生成一个大小为256的查找表,表中每个元素的值为对应灰度值的γ次方运算结果。在实现时,只需要输入像素的灰度值作为查找表的索引,即可得到对应的输出像素的灰度值。

基于LUT查找表方法的图像gamma校正算法的FPGA实现可以采用以下步骤:

定义输入和输出图像的数据格式,例如8位灰度图像,可以使用单个8位寄存器表示每个像素的灰度值。
定义一个大小为256的查找表,表中每个元素的值为对应灰度值的1/γ次方运算结果。可以使用FPGA中的ROM或者CAM模块来实现查找表。
读取输入图像的每个像素的灰度值,并将其作为查找表的索引,得到对应的输出像素的灰度值。可以使用FPGA中的单端口RAM或者双端口RAM来实现像素值的存储和读取。
将输出像素的灰度值写入到输出图像中,完成一次gamma校正。
需要注意的是,由于FPGA的并行性,可以将整个图像的像素并行处理,实现高速的gamma校正。此外,也可以使用流水线结构、多级查找表等技术进一步提高计算速度和精度。

4.部分核心程序

````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2022/07/28 01:51:45
// Design Name:
// Module Name: test_image
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module test_image;

reg i_clk;
reg i_rst;
reg [7:0] Buffer [0:100000];
reg [7:0] II;
wire [7:0] o_gamma1_jiaoz;
wire [7:0] o_gamma2_jiaoz;
integer fids,idx=0,dat;

//D:\FPGA_Proj\FPGAtest\code_proj\project_1\project_1.srcs\sources_1
initial
begin
fids = $fopen("D:\FPGA_Proj\FPGAtest\code_proj\test0.bmp","rb");
dat = $fread(Buffer,fids);
$fclose(fids);
end

initial
begin
i_clk=1;
i_rst=1;

1000;

i_rst=0;
end

always #5 i_clk=~i_clk;

always@(posedge i_clk)
begin
II<=Buffer[idx];
idx<=idx+1;
end

tops tops_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_I (II),
.o_gamma1_jiaoz (o_gamma1_jiaoz),
.o_gamma2_jiaoz (o_gamma2_jiaoz)
);
integer fout1;
integer fout2;
initial begin
fout1 = $fopen("SAVEDATA1.txt","w");
fout2 = $fopen("SAVEDATA2.txt","w");
end

always @ (posedge i_clk)
begin
if(idx<=66617)
$fwrite(fout1,"%d\n",o_gamma1_jiaoz);
else
$fwrite(fout1,"%d\n",0);

if(idx<=66617)
$fwrite(fout2,"%d\n",o_gamma2_jiaoz);
else
$fwrite(fout2,"%d\n",0);

end

endmodule

```

相关文章
|
22天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 人机交互 数据安全/隐私保护
基于图像形态学处理和凸包分析法的指尖检测matlab仿真
本项目基于Matlab2022a实现手势识别中的指尖检测算法。测试样本展示无水印运行效果,完整代码含中文注释及操作视频。算法通过图像形态学处理和凸包检测(如Graham扫描法)来确定指尖位置,但对背景复杂度敏感,需调整参数PARA1和PARA2以优化不同手型的检测精度。
|
4月前
|
算法 数据安全/隐私保护
织物图像的配准和拼接算法的MATLAB仿真,对比SIFT,SURF以及KAZE
本项目展示了织物瑕疵检测中的图像拼接技术,使用SIFT、SURF和KAZE三种算法。通过MATLAB2022a实现图像匹配、配准和拼接,最终检测并分类织物瑕疵。SIFT算法在不同尺度和旋转下保持不变性;SURF算法提高速度并保持鲁棒性;KAZE算法使用非线性扩散滤波器构建尺度空间,提供更先进的特征描述。展示视频无水印,代码含注释及操作步骤。
|
22天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
121 68
|
1月前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
2月前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
191 80
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
1月前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
1月前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
30天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。