基于FPGA的图像sobel锐化实现,包括tb测试文件和MATLAB辅助验证

简介: 基于FPGA的图像sobel锐化实现,包括tb测试文件和MATLAB辅助验证

1.算法运行效果图预览

2674e42a4cf75554a2ce47633bc0572b_82780907_202311282255180385811233_Expires=1701183918&Signature=LyCSvTMsmr8VIexXYuk8Yh1QC%2Bc%3D&domain=8.jpeg

将FPGA的仿真结果导入到matlab显示图像效果

fdb1ba74ba8cd2fe4f70e99564e559d1_82780907_202311282255290244561570_Expires=1701183929&Signature=WKt8sEEbbpj7kx3saN%2BU8v0nDWk%3D&domain=8.jpeg

2.算法运行软件版本
MATLAB2022a,vivado2019.2

3.算法理论概述
基于FPGA的图像Sobel锐化实现,是一种通过使用Sobel算子对图像进行边缘检测,从而提高图像清晰度的方法。Sobel算子是一种常用的边缘检测算子,它可以通过计算图像像素点周围像素的灰度值差异,来检测出图像的边缘。

实现步骤:

1.图像预处理:将输入的图像转换为灰度图像。这个步骤可以通过将RGB图像中的每个像素点的RGB值转换为灰度值实现。转换公式如下:

Gray = 0.2989 R + 0.5870 G + 0.1140 * B

其中,Gray是转换后的灰度值,R、G、B分别是原像素点的RGB值。

  1. Sobel算子计算:根据Sobel算子,计算图像中每个像素点的梯度幅值和方向。Sobel算子包含水平和垂直两个方向的算子,分别用于计算像素点在水平和垂直方向的梯度。

水平方向算子:

[-1, 0, 1; -2, 0, 2; -1, 0, 1]

垂直方向算子:

[-1, -2, -1; 0, 0, 0; 1, 2, 1]

对于每个像素点,用周围的像素点与其对应的算子进行卷积计算,得到该像素点在水平和垂直方向的梯度。然后,根据以下公式计算该像素点的梯度幅值和方向:

梯度幅值 = sqrt(Gx^2 + Gy^2)

梯度方向 = arctan(Gy / Gx)

其中,Gx和Gy分别是像素点在水平和垂直方向的梯度。

3.锐化:将sobel的计算结果和原始图像相加得到锐化结果。

   以上是基于FPGA的图像Sobel锐化的实现步骤和对应的数学公式。需要注意的是,在实现过程中需要考虑FPGA的硬件资源和性能限制,例如存储器容量、计算单元的数量等。因此,可能需要对上述算法进行一些优化或调整,以适应FPGA的硬件环境。

4.部分核心程序
```module test_image;

reg i_clk;
reg i_rst;
reg [7:0] Buffer [0:100000];
reg [7:0] II;
wire [9:0] o_sobel;
integer fids,idx=0,dat;

//D:\FPGA_Proj\FPGAtest\code_proj\project_1\project_1.srcs\sources_1
initial
begin
fids = $fopen("D:\FPGA_Proj\FPGAtest\code_proj\test0.bmp","rb");
dat = $fread(Buffer,fids);
$fclose(fids);
end

initial
begin
i_clk=1;
i_rst=1;

1000;

i_rst=0;
end

always #5 i_clk=~i_clk;

always@(posedge i_clk)
begin
II<=Buffer[idx];
idx<=idx+1;
end

tops tops_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_I (II),
.o_sobel_RUIHUA (o_sobel)
);

integer fout1;
initial begin
fout1 = $fopen("SAVEDATA.txt","w");
end

always @ (posedge i_clk)
begin
if(idx<=66627)
$fwrite(fout1,"%d\n",o_sobel);
else
$fwrite(fout1,"%d\n",0);
end

endmodule

```

相关文章
|
4月前
|
JSON 数据格式 Python
【2023最新】Matlab 保存JSON数据集文件,并用Python读取
本文介绍了如何使用MATLAB生成包含数据和标签的JSON格式数据集文件,并展示了用Python读取该JSON文件作为训练集的方法。
138 1
|
2月前
|
算法 数据安全/隐私保护
织物图像的配准和拼接算法的MATLAB仿真,对比SIFT,SURF以及KAZE
本项目展示了织物瑕疵检测中的图像拼接技术,使用SIFT、SURF和KAZE三种算法。通过MATLAB2022a实现图像匹配、配准和拼接,最终检测并分类织物瑕疵。SIFT算法在不同尺度和旋转下保持不变性;SURF算法提高速度并保持鲁棒性;KAZE算法使用非线性扩散滤波器构建尺度空间,提供更先进的特征描述。展示视频无水印,代码含注释及操作步骤。
|
3月前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
|
4月前
Matlab批量修改指定文件下文件名
Matlab批量修改指定文件下文件名
191 1
|
4月前
|
存储 算法 Serverless
【matlab】matlab基于DTW和HMM方法数字语音识别系统(源码+音频文件+GUI界面)【独一无二】
【matlab】matlab基于DTW和HMM方法数字语音识别系统(源码+音频文件+GUI界面)【独一无二】
|
4月前
|
存储 Serverless
【matlab】matlab实现倒谱法基音频率检测和共振峰检测(源码+音频文件)【独一无二】
【matlab】matlab实现倒谱法基音频率检测和共振峰检测(源码+音频文件)【独一无二】
|
5月前
|
算法
基于粒子群优化的图像融合算法matlab仿真
这是一个基于粒子群优化(PSO)的图像融合算法,旨在将彩色模糊图像与清晰灰度图像融合成彩色清晰图像。在MATLAB2022a中测试,算法通过PSO求解最优融合权值参数,经过多次迭代更新粒子速度和位置,以优化融合效果。核心代码展示了PSO的迭代过程及融合策略。最终,使用加权平均法融合图像,其中权重由PSO计算得出。该算法体现了PSO在图像融合领域的高效性和融合质量。
|
28天前
|
JSON Java 测试技术
SpringCloud2023实战之接口服务测试工具SpringBootTest
SpringBootTest同时集成了JUnit Jupiter、AssertJ、Hamcrest测试辅助库,使得更容易编写但愿测试代码。
55 3
|
2月前
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
71 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
|
3月前
|
移动开发 JSON Java
Jmeter实现WebSocket协议的接口测试方法
WebSocket协议是HTML5的一种新协议,实现了浏览器与服务器之间的全双工通信。通过简单的握手动作,双方可直接传输数据。其优势包括极小的头部开销和服务器推送功能。使用JMeter进行WebSocket接口和性能测试时,需安装特定插件并配置相关参数,如服务器地址、端口号等,还可通过CSV文件实现参数化,以满足不同测试需求。
256 7
Jmeter实现WebSocket协议的接口测试方法