基于FPGA的图像二值化处理,包括tb测试文件和MATLAB辅助验证

简介: 基于FPGA的图像二值化处理,包括tb测试文件和MATLAB辅助验证

1.算法运行效果图预览

4c6bc33439c98f0e2609b8c07466f0a0_82780907_202311241319120546625679_Expires=1700803752&Signature=wIjm11Hqna79qK7GRGkuXYRnoa0%3D&domain=8.jpeg

将FPGA的数据导入到matlab进行显示

e7b17274cdd59cdcfb68cc81ee6b3f21_82780907_202311241319210421643320_Expires=1700803761&Signature=1Wx9bbwdyiUaCJWjfXkmHEvJs4M%3D&domain=8.jpeg

2.算法运行软件版本
Vivado2019.2

matlab2022a

3.算法理论概述
基于FPGA(现场可编程门阵列)的图像二值化处理主要依赖于数字图像处理技术。其原理是将灰度图像转化为二值图像,使图像只剩下黑白两种颜色,从而简化图像数据,有利于图像的进一步分析和处理。

    在图像二值化处理中,最常用的方法是阈值法,也就是设置一个阈值,然后根据这个阈值将图像的像素点分为两类。具体来说,如果图像的某个像素点的灰度值大于或等于这个阈值,就将其设置为白色(或黑色),否则就将其设置为黑色(或白色)。

阈值法的数学公式如下:

二值化后的图像像素点 P(x,y) = { 1, if 原图像像素点 P(x,y) 的灰度值 >= 阈值; 0, if 原图像像素点 P(x,y) 的灰度值 < 阈值。 }

其中,P(x,y) 是图像在 (x,y) 位置的像素点。

基于FPGA的图像二值化处理,通常包括以下步骤:

图像采集:通过摄像头或其他图像输入设备获取图像数据。
预处理:对采集的图像进行预处理,如降噪、归一化等,以改善图像质量并减少后续处理的复杂性。
二值化:将预处理后的图像进行二值化处理,常用的方法有全局阈值法、局部阈值法等。
后处理:对二值化后的图像进行进一步的处理,如去噪、填充等,以改善二值化效果。
输出:将处理后的图像数据输出到显示设备或其他设备。
FPGA在这些步骤中的作用主要是实现这些算法,并对图像数据进行实时处理。由于FPGA具有并行处理能力和可配置性,因此非常适合用于实现这种需要高效、实时处理的图像处理任务。

  基于FPGA的图像二值化处理的具体实现方式会因FPGA的型号、图像处理算法、硬件环境等因素而有所不同。例如,不同的FPGA型号可能会有不同的硬件资源(如逻辑单元、内存大小等),因此在实现图像处理算法时可能需要根据硬件资源进行一些优化。同时,不同的图像处理算法对计算性能的要求也不同,因此可能需要根据算法的要求来选择适合的FPGA型号。

   总的来说,基于FPGA的图像二值化处理是一种高效、实时的图像处理技术,它利用FPGA的并行处理能力和可配置性来实现图像处理算法,从而实现对图像数据的实时处理和分析。

4.部分核心程序
````timescale 1ns / 1ps
.............................................................................
module test_image;

reg i_clk;
reg i_rst;
reg i_ready;
reg [7:0] Tmp[0:100000];
reg [7:0] datas;
wire [7:0] o_ybw;
integer fids,jj=0,dat;

//D:\FPGA_Proj\FPGAtest\code2

initial
begin
fids = $fopen("D:\FPGA_Proj\FPGAtest\code2\data.bmp","rb");
dat = $fread(Tmp,fids);
$fclose(fids);
end

initial
begin
i_clk=1;
i_rst=1;
i_ready=0;

1000;

i_ready=1;
i_rst=0;
end

always #5 i_clk=~i_clk;

always@(posedge i_clk)
begin
datas<=Tmp[jj];
jj<=jj+1;
end

im2bw im2bw_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_ready (i_ready),
.i_xin (datas),
.o_ybw (o_ybw)
);

integer fout1;
initial begin
fout1 = $fopen("result.txt","w");
end

always @ (posedge i_clk)
begin

$fwrite(fout1,"%d\n",o_ybw);

end

endmodule

```

相关文章
|
2月前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
2月前
|
算法 数据安全/隐私保护
织物图像的配准和拼接算法的MATLAB仿真,对比SIFT,SURF以及KAZE
本项目展示了织物瑕疵检测中的图像拼接技术,使用SIFT、SURF和KAZE三种算法。通过MATLAB2022a实现图像匹配、配准和拼接,最终检测并分类织物瑕疵。SIFT算法在不同尺度和旋转下保持不变性;SURF算法提高速度并保持鲁棒性;KAZE算法使用非线性扩散滤波器构建尺度空间,提供更先进的特征描述。展示视频无水印,代码含注释及操作步骤。
|
3月前
|
监控 算法 安全
基于颜色模型和边缘检测的火焰识别FPGA实现,包含testbench和matlab验证程序
本项目展示了基于FPGA的火焰识别算法,可在多种应用场景中实时检测火焰。通过颜色模型与边缘检测技术,结合HSV和YCbCr颜色空间,高效提取火焰特征。使用Vivado 2019.2和Matlab 2022a实现算法,并提供仿真结果与测试样本。FPGA平台充分发挥并行处理优势,实现低延迟高吞吐量的火焰检测。项目包含完整代码及操作视频说明。
|
3月前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
|
5月前
|
算法
基于粒子群优化的图像融合算法matlab仿真
这是一个基于粒子群优化(PSO)的图像融合算法,旨在将彩色模糊图像与清晰灰度图像融合成彩色清晰图像。在MATLAB2022a中测试,算法通过PSO求解最优融合权值参数,经过多次迭代更新粒子速度和位置,以优化融合效果。核心代码展示了PSO的迭代过程及融合策略。最终,使用加权平均法融合图像,其中权重由PSO计算得出。该算法体现了PSO在图像融合领域的高效性和融合质量。
|
2天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现了16QAM基带通信系统,包括调制、信道仿真、解调及误码率统计模块。通过Vivado2019.2仿真,设置不同SNR(如8dB、12dB),验证了软解调相较于传统16QAM系统的优越性,误码率显著降低。系统采用Verilog语言编写,详细介绍了16QAM软解调的原理及实现步骤,适用于高性能数据传输场景。
99 69
|
6天前
|
移动开发 算法 数据安全/隐私保护
基于FPGA的QPSK调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的QPSK调制解调系统,通过Vivado 2019.2进行仿真,展示了在不同信噪比(SNR=1dB, 5dB, 10dB)下的仿真效果。与普通QPSK系统相比,该系统的软解调技术显著降低了误码率。文章还详细阐述了QPSK调制的基本原理、信号采样、判决、解调及软解调的实现过程,并提供了Verilog核心程序代码。
44 26
|
12天前
|
算法 异构计算
基于FPGA的4ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4-ASK调制解调系统的算法仿真效果、理论基础及Verilog核心程序。仿真在Vivado2019.2环境下进行,分别测试了SNR为20dB、15dB、10dB时的性能。理论部分概述了4-ASK的工作原理,包括调制、解调过程及其数学模型。Verilog代码实现了4-ASK调制器、加性高斯白噪声(AWGN)信道模拟、解调器及误码率计算模块。
35 8
|
28天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的1024QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的1024QAM调制解调系统的仿真与实现。通过Vivado 2019.2进行仿真,分别在SNR=40dB和35dB下验证了算法效果,并将数据导入Matlab生成星座图。1024QAM调制将10比特映射到复数平面上的1024个星座点之一,适用于高数据传输速率的应用。系统包含数据接口、串并转换、星座映射、调制器、解调器等模块。Verilog核心程序实现了调制、加噪声信道和解调过程,并统计误码率。
42 1
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的64QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的64QAM调制解调通信系统的设计与实现,包括信号生成、调制、解调和误码率测试。系统在Vivado 2019.2中进行了仿真,通过设置不同SNR值(15、20、25)验证了系统的性能,并展示了相应的星座图。核心程序使用Verilog语言编写,加入了信道噪声模块和误码率统计功能,提升了仿真效率。
50 4