Chaos Mesh网络延迟原理探索

本文涉及的产品
Serverless 应用引擎 SAE,800核*时 1600GiB*时
EMR Serverless StarRocks,5000CU*H 48000GB*H
应用实时监控服务ARMS - 应用监控,每月50GB免费额度
简介: 在使用Chaos Mesh的过程中发现, 注入网络类故障可以做到对pod的无感知注入,好奇是如何实现的。 所以这里对网络故障注入进行简单的探索,以便更深层的了解故障注入。

背景

在使用Chaos Mesh的过程中发现, 注入网络类故障可以做到对pod的无感知注入,好奇是如何实现的。 所以这里对网络故障注入进行简单的探索,以便更深层的了解故障注入。

分析步骤

故障注入

首先需要准备好Chaos MeshKubernetes环境,使用平台或yaml的方式来注入一个网络延迟的故障。故障注入配置如下:

kind: NetworkChaos
apiVersion: chaos-mesh.org/v1alpha1
metadata:
  namespace: default
  name: ceshi-delay-3
  annotations:
    experiment.chaos-mesh.org/pause: 'false'
spec:
  selector:
    namespaces:
      - default
    labelSelectors:
      app: ceshi # 通过label匹配需要注入的pod
  mode: all
  action: delay # 网络故障类型,延迟
  duration: 120m # 持续时间, 这个为了持续观察,所以配置的时间较长
  delay:
    latency: 50ms # 延迟时间
    correlation: '0.5' # 表示延迟时间的时间长度与前一次延迟时长的相关性    
    jitter: 1ms # 表示延迟时间的变化范围    
  direction: to
  externalTargets:
    - baidu.com # 应用的目标

首先获取节点以及pod的相关信息。

# 获取容器ID 
export DOCKER_NAME=ceshi
export DOCKER_ID=`docker ps | grep $DOCKER_NAME| grep -v pause | awk '{print $1}'`
# 获取容器的进程ID
export DOCKER_PID=`docker inspect $DOCKER_ID -f {
    {
    .State.Pid}}`
# 进入容器的网络命名空间
nsenter -n -t $DOCKER_PID

# 查看容器的网络相关的配置
iptables-save -c
ipset save
tc qdisc

输出内容如下:

[root@iZbp1elafds24y0y49tf03Z ~]# iptables-save -c
# Generated by iptables-save v1.4.21 on Thu Jul 27 16:56:15 2023
*raw
:PREROUTING ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
COMMIT
# Completed on Thu Jul 27 16:56:15 2023
# Generated by iptables-save v1.4.21 on Thu Jul 27 16:56:15 2023
*mangle
:PREROUTING ACCEPT [0:0]
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
:POSTROUTING ACCEPT [0:0]
COMMIT
# Completed on Thu Jul 27 16:56:15 2023
# Generated by iptables-save v1.4.21 on Thu Jul 27 16:56:15 2023
*nat
:PREROUTING ACCEPT [0:0]
:INPUT ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
:POSTROUTING ACCEPT [0:0]
COMMIT
# Completed on Thu Jul 27 16:56:15 2023
# Generated by iptables-save v1.4.21 on Thu Jul 27 16:56:15 2023
*filter
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
:CHAOS-INPUT - [0:0]
:CHAOS-OUTPUT - [0:0]
:TC-TABLES-0 - [0:0]
[0:0] -A INPUT -j CHAOS-INPUT
[0:0] -A OUTPUT -j CHAOS-OUTPUT
[0:0] -A CHAOS-OUTPUT -j TC-TABLES-0
[0:0] -A TC-TABLES-0 -o eth0 -m set --match-set ceshi_84ad17d35da_set_netgt dst,dst -j CLASSIFY --set-class 0001:0004
COMMIT
# Completed on Thu Jul 27 16:56:15 2023
[root@iZbp1elafds24y0y49tf03Z ~]# ipset save
create ceshi_84ad17d35da_net_netgt hash:net family inet hashsize 1024 maxelem 65536
add ceshi_84ad17d35da_net_netgt 110.242.68.66
add ceshi_84ad17d35da_net_netgt 39.156.66.10
create ceshi_84ad17d_netport_netgt hash:net,port family inet hashsize 1024 maxelem 65536
create ceshi_84ad17d35da_set_netgt list:set size 8
add ceshi_84ad17d35da_set_netgt ceshi_84ad17d35da_net_netgt
add ceshi_84ad17d35da_set_netgt ceshi_84ad17d_netport_netgt
[root@iZbp1elafds24y0y49tf03Z ~]# tc qdisc
qdisc noqueue 0: dev lo root refcnt 2
qdisc prio 1: dev eth0 root refcnt 2 bands 4 priomap  1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1
qdisc netem 5: dev eth0 parent 1:4 limit 1000 delay 50.0ms  1.0ms 0.5%
qdisc sfq 4: dev eth0 parent 1:3 limit 127p quantum 1514b depth 127 divisor 1024
qdisc sfq 3: dev eth0 parent 1:2 limit 127p quantum 1514b depth 127 divisor 1024
qdisc sfq 2: dev eth0 parent 1:1 limit 127p quantum 1514b depth 127 divisor 1024

总结

到这里可以发现Chaos Mesh通过 iptables + tc的方式, 对流量进行拦截后处理。 实现网络故障的目录, 其他网络类型故障也是基于该原理实现。


tc qdisc del dev eth0 root
tc qdisc add dev eth0 root handle 1: netem delay 50000
tc qdisc add dev eth0 parent 1: handle 2: netem delay 100000
tc qdisc add dev eth0 parent 2: handle 3: prio bands 5 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1
tc qdisc add dev eth0 parent 3:1 handle 4: sfq
tc qdisc add dev eth0 parent 3:2 handle 5: sfq
tc qdisc add dev eth0 parent 3:3 handle 6: sfq
tc qdisc add dev eth0 parent 3:4 handle 7: netem delay 50000
iptables -A TC-TABLES-0 -o eth0 -m set --match-set A dst -j CLASSIFY --set-class 3:4 -w 5
tc qdisc add dev eth0 parent 3:5 handle 8: netem delay 100000
iptables -A TC-TABLES-1 -o eth0 -m set --match-set B dst -j CLASSIFY --set-class 3:5 -w 5

参考文档:

故障注入源码:https://github.com/chaos-mesh/chaos-mesh/blob/master/pkg/chaosdaemon/tc_server.go#L112

相关文章
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的奥秘:探索神经网络的核心原理
本文将深入浅出地介绍深度学习的基本概念,包括神经网络的结构、工作原理以及训练过程。我们将从最初的感知机模型出发,逐步深入到现代复杂的深度网络架构,并探讨如何通过反向传播算法优化网络权重。文章旨在为初学者提供一个清晰的深度学习入门指南,同时为有经验的研究者回顾和巩固基础知识。
35 11
|
1月前
|
机器学习/深度学习 存储 算法
回声状态网络(Echo State Networks,ESN)详细原理讲解及Python代码实现
本文详细介绍了回声状态网络(Echo State Networks, ESN)的基本概念、优点、缺点、储层计算范式,并提供了ESN的Python代码实现,包括不考虑和考虑超参数的两种ESN实现方式,以及使用ESN进行时间序列预测的示例。
61 4
回声状态网络(Echo State Networks,ESN)详细原理讲解及Python代码实现
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的自适应神经网络:原理与应用
【8月更文挑战第14天】在深度学习领域,自适应神经网络作为一种新兴技术,正逐渐改变我们处理数据和解决问题的方式。这种网络通过动态调整其结构和参数来适应输入数据的分布和特征,从而在无需人工干预的情况下实现最优性能。本文将深入探讨自适应神经网络的工作原理、关键技术及其在多个领域的实际应用,旨在为读者提供一个全面的视角,理解这一技术如何推动深度学习向更高效、更智能的方向发展。
|
1天前
|
传感器 运维 物联网
蓝牙Mesh网络:连接未来的智能解决方案
蓝牙Mesh网络:连接未来的智能解决方案
28 12
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
深度剖析深度神经网络(DNN):原理、实现与应用
本文详细介绍了深度神经网络(DNN)的基本原理、核心算法及其具体操作步骤。DNN作为一种重要的人工智能工具,通过多层次的特征学习和权重调节,实现了复杂任务的高效解决。文章通过理论讲解与代码演示相结合的方式,帮助读者理解DNN的工作机制及实际应用。
|
7天前
|
网络协议 Linux 应用服务中间件
Socket通信之网络协议基本原理
【9月更文挑战第14天】网络协议是机器间交流的约定格式,确保信息准确传达。主要模型有OSI七层与TCP/IP模型,通过分层简化复杂网络环境。IP地址全局定位设备,MAC地址则在本地网络中定位。网络分层后,数据包层层封装,经由不同层次协议处理,最终通过Socket系统调用在应用层解析和响应。
|
8天前
|
网络协议 网络架构 数据格式
TCP/IP基础:工作原理、协议栈与网络层
TCP/IP(传输控制协议/互联网协议)是互联网通信的基础协议,支持数据传输和网络连接。本文详细阐述了其工作原理、协议栈构成及网络层功能。TCP/IP采用客户端/服务器模型,通过四个层次——应用层、传输层、网络层和数据链路层,确保数据可靠传输。网络层负责IP寻址、路由选择、分片重组及数据包传输,是TCP/IP的核心部分。理解TCP/IP有助于深入掌握互联网底层机制。
35 2
|
1月前
|
缓存 网络协议 算法
网络编程原理
网络编程原理
|
1月前
|
网络协议 算法 安全
网络原理问题
网络原理问题
|
1月前
|
机器学习/深度学习 人工智能 算法
深度学习的奥秘:探索神经网络的核心原理
深度学习,一个听起来既神秘又充满魔力的词汇,它如同一扇通往未知世界的大门,背后隐藏着无尽的智慧与可能。本文将以一种通俗易懂的方式,带领读者走进深度学习的世界,探索那些构成神经网络核心的基本原理。我们将从最初的感知机模型出发,逐步深入到复杂的多层网络结构,揭示数据如何在这些网络中流动、变化,最终实现智能决策的过程。通过这篇文章,你将了解到深度学习不仅仅是技术的堆砌,更是对自然界智慧的一种模仿与致敬。
45 1