前言:泛型编程
如何实现一个通用的交换函数呢?
void Swap(int& left, int& right) { int temp = left; left = right; right = temp; } void Swap(double& left, double& right) { double temp = left; left = right; right = temp; } void Swap(char& left, char& right) { char temp = left; left = right; right = temp; } ......
使用函数重载虽然可以实现,但是有一下几个不好的地方:
- 重载的函数 仅仅是类型不同,代码复用率比较低,只要有新类型出现时,就需要用户自己增加对应的函数
- 代码的可维护性比较低,一个出错可能所有的重载均出错
那能否告诉编译器一个模子,让编译器根据不同的类型利用该模子来生成代码呢?
如果在C++中,也能够存在这样一个模具,通过给这个模具中 填充不同材料(类型),来获得不同材料的铸件**(即生成具体类型的代码)**,那将会节省许多头发。巧的是前人早已将树栽好,我们只需在此乘凉。
泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。 模板是泛型编程的基础。
模板 template
一、函数模板
(一)函数模板概念
函数模板代表了一个函数家族,该函数模板与类型无关,
在使用时被参数化,根据实参类型 产生函数的特定类型版本。
(二)函数模板格式
template
返回值类型 函数名(参数列表){}[ 注意:typename 是用来 定义模板参数 的关键字,也可以使用class( 切记:不能使用struct代替class ) ]
template<typename T> //**模板 template** //**typename** 是用来 **定义模板参数 的关键字** //也可以使用**class** ( 切记:不能使用struct代替class ) ] void Swap( T& left, T& right) { T temp = left; left = right; right = temp; }
(三)函数模板的原理
函数模板 是一个 蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具 。
所以其实 模板就是将本来应该我们做的重复的事情交给了编译器
在编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演 生成对应类型的函数 以供调用。比如:当用double类型使用函数模板时,编译器通过对实参类型的推演,将T确定为double类型,然后产生一份专门处理double类型的代码,对于字符类型也是如此
(四)函数模板的实例化
用不同类型的参数使用函数模板时,称为 函数模板的实例化。
模板参数实例化分为:隐式实例化 和 显式实例化 。
1. 隐式实例化:让编译器根据实参推演模板参数的实际类型
template<class T> T Add(const T& left, const T& right) { return left + right; } int main() { int a1 = 10, a2 = 20; double d1 = 10.0, d2 = 20.0; Add(a1, a2); Add(d1, d2); /* 该语句不能通过编译,因为在编译期间,当编译器看到该实例化时,需要推演其实参类型 ★通过实参a1将T推演为int,通过实参d1将T推演为double类型,但模板参数列表中只有一个T,★ 编译器无法确定此处到底该将T确定为int 或者 double类型而报错 【 注意:在模板中,编译器一般不会进行类型转换操作,】 因为不知道该转换成哪种类型(推演实例化),一旦转化出问题,编译器就需要背黑锅 Add(a1, d1); */ // 此时有两种处理方式:1. 用户自己来强制转化 2. 使用显式实例化 Add(a, (int)d); return 0; }
- 用一个模版参数无法推成两个类型
此时有两种处理方式:1. 用户自己来强制转化, 2. 使用显式实例化
2. 显式实例化:在函数名后的<>中指定模板参数的实际类型
int main(void) { int a = 10; double b = 20.0; //类型不匹配,会进行隐式类型转换 // 显式实例化:在函数名后的<>中指定模板参数的实际类型 Add<int>(a, b); return 0; }
如果类型不匹配,编译器会尝试进行 隐式类型转换
如果无法转换成功编译器将会报错。
(五)模板参数的匹配原则
1. 一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这个非模板函数
// 专门处理int的加法函数 int Add(int left, int right) //非模板函数 { return left + right; } // 通用加法函数 //模板函数 template<class T> T Add(T left, T right) { return left + right; } void Test() { Add(1, 2); // 与非模板函数匹配,编译器不需要特化 Add<int>(1, 2); // 调用编译器特化的Add版本 }
2. 对于 非模板函数 和 同名函数模板,如果其他条件都相同,在调动时会优先调用非模板函数,而不会从该模板产生出一个实例。
如果模板可以产生一个具有更好匹配的函数, 那么将选择模板
// 专门处理int的加法函数 int Add(int left, int right) { return left + right; } // 通用加法函数 template<class T1, class T2> T1 Add(T1 left, T2 right) { return left + right; } void Test() { Add(1, 2); // 与非函数模板类型完全匹配,不需要函数模板实例化 Add(1, 2.0); // 模板函数可以生成更加匹配的版本,编译器根据实参生成更加匹配的Add函 数 }
- 模板函数 不允许自动类型转换,但 普通函数 可以进行 自动类型转换
★ 总结:
匹配调用原则:
- 合适匹配的情况下,有现成的吃现成的
【 编译器就省一次工作 】 - 有更合适就吃更合适的,哪怕要自己做
【 要是 普通函数 与 调用的函数类型不同,也没有必要硬吃,如果模板可以产生一个具有更好匹配的函数, 那么将选择模板 】 - 没有就将就吃
【 如果没有更匹配, 也可以凑合用( 通过隐式类型转换 )】
三、类模板
(一)类模板的定义格式
template<class T1, class T2, ..., class Tn> class 类模板名 { // 类内成员定义 }; // 动态顺序表 // 注意:Vector不是具体的类,是编译器根据被实例化的类型生成具体类的模具 template<class T> //temple<class T> 具有传参的作用 class Vector { public : Vector(size_t capacity = 10) //初始化列表 : _pData(new T[capacity]) , _size(0) , _capacity(capacity) {} // 使用析构函数演示:在类中声明,在类外定义。 ~Vector(); void PushBack(const T& data); void PopBack(); // ... size_t Size() {return _size;} T& operator[](size_t pos) { assert(pos < _size); return _pData[pos]; } private: T* _pData; size_t _size; size_t _capacity; }; // 注意:类模板中的函数 放在类外进行定义时,需要 加模板参数列表 template <class T> // 注意:类模板中的函数 放在类外进行定义时,需要 加模板参数列表 Vector<T>::~Vector() //要说明在类域里 { if(_pData) delete[] _pData; _size = _capacity = 0; }
(二)类模板的实例化
类模板实例化 与函数模板实例化不同
类模板实例化 需要 在类模板名字后跟<>,然后将实例化的类型放在<>中即可
类模板名字不是真正的类,而实例化的结果才是真正的类
// Vector类名,Vector<int>才是类型 Vector<int> s1; Vector<double> s2;
★ Vector 才是类型
// temple具有传参的作用
构造函数的特点:是和类名相同 ,而不是和类型相同
所以Stack()才是构造函数