【网络】网络编程套接字(二)

简介: 【网络】网络编程套接字(二)

简单的TCP网络程序

TCP服务器创建套接字的做法与UDP服务器是基本一样的,但是TCP服务器会更加繁琐一些。

1、服务端创建套接字并绑定

TCP服务器在调用socket函数创建套接字时,参数设置如下:

  • 协议家族选择AF_INET,表示我们要进行的是网络通信。
  • 创建套接字时所需的服务类型应该是SOCK_STREAM,因为我们编写的是TCP服务器,SOCK_STREAM提供的就是一个有序的、可靠的、全双工的、基于连接的流式服务。
  • 协议类型默认设置为0即可。

我们将TCP服务器封装成一个类,当我们定义出一个服务器对象后需要对其初始化,当析构服务器时,可以将服务器对应的文件描述符进行关闭。

// tcp_server.hpp
#pragma once
#include <iostream>
#include <cstring>
#include <cerrno>
#include <unistd.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <arpa/inet.h>
#include <netinet/in.h>
enum
{
    USAGE_ERR = 1
    SOCKET_ERR,
    BIND_ERR
};
class TcpServer
{
public:
    TcpServer(uint16_t port)
        :_port(port)
    {}
    void Init()
    {
        // 1.创建监听套接字
        _listen_fd = socket(AF_INET, SOCK_STREAM, 0);
        if (_listen_fd < 0)
        {
            std::cerr << "socket fail: " << strerror(errno) << std::endl;
            exit(SOCKET_ERR);
        }
        // 2.进行绑定
        struct sockaddr_in local;
        socklen_t len = sizeof(local);
        memset(&local, 0, len);
        local.sin_family = AF_INET;
        local.sin_addr.s_addr = INADDR_ANY;
        local.sin_port = htons(_port);
        if (bind(_listen_fd, (struct sockaddr*)&local, len) < 0)
        {
            std::cerr << "bind fail : " << strerror(errno) << std::endl;
            exit(BIND_ERR);
        }
        // ...
    }
    ~TcpServer()
    {
        if (_listen_fd >= 0)
        {
            close(_listen_fd);
        }
    }
private:
    int _listen_fd;         // 监听套接字
    uint16_t _port;         // 端口号
};

2、服务端监听

前面的步骤TCP与UDP的创建几乎是一模一样的,但是到了这一步就不一样了,因为TCP服务器是面向连接的,客户端在正式向TCP服务器发送数据之前,需要先与TCP服务器建立连接,然后才能与服务器进行通信。

因此TCP服务器需要时刻注意是否有客户端发来连接请求,此时就需要将TCP服务器创建的套接字设置为监听状态,这需要我们使用一个叫做listen的函数。

int listen(int sockfd, int backlog);

参数说明:

  • sockfd:需要设置为监听状态的套接字对应的文件描述符。
  • backlog全连接队列的最大长度。如果有多个客户端同时发来连接请求,此时未被服务器处理的连接就会放入连接队列,该参数代表的就是这个全连接队列的最大长度,一般不要设置太大,设置为5~10即可。

返回值说明:

  • 监听成功返回0,监听失败返回-1,同时错误码会被设置。

TCP服务器在创建完套接字和绑定后,下一步就是要将套接字设置为监听状态,监听是否有新的连接到来。如果监听失败意味着TCP服务器无法接收客户端发来的连接请求,因此监听失败我们直接终止程序。

class TcpServer
{
public:
  // ...
    void Init()
    {
        // 1.创建监听套接字
        _listen_fd = socket(AF_INET, SOCK_STREAM, 0);
        if (_listen_fd < 0)
        {
            std::cerr << "socket fail: " << strerror(errno) << std::endl;
            exit(SOCKET_ERR);
        }
        // 2.进行绑定
        struct sockaddr_in local;
        socklen_t len = sizeof(local);
        memset(&local, 0, len);
        local.sin_family = AF_INET;
        local.sin_addr.s_addr = INADDR_ANY;
        local.sin_port = htons(_port);
        if (bind(_listen_fd, (struct sockaddr*)&local, len) < 0)
        {
            std::cerr << "bind fail : " << strerror(errno) << std::endl;
            exit(BIND_ERR);
        }
        // 3.开始监听
        if (listen(_listen_fd, 5) < 0)
        {
            std::cerr << "listen fail : " << strerror(errno) << std::endl;
            exit(LISTEN_ERR);
        }
    }
  // ...
};

注意:

  • 初始化TCP服务器时创建的套接字并不是用于网络数据传输的套接字,而应该叫做监听套接字。
  • 在初始化TCP服务器时,只有创建套接字成功、绑定成功、监听成功,此时TCP服务器的初始化才算完成。

2、服务端获取连接

TCP服务器初始化并设置为监听状态后就可以正常运行了,但是现在TCP服务器在与客户端还不能够进行网络通信,因为服务器还需要先获取到客户端的连接,我们可以使用accept函数来获取连接。

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

参数说明:

  • sockfd:特定的监听套接字,表示从该监听套接字中获取连接。
  • addr:对端网络相关的属性信息,包括协议家族、IP地址、端口号等。
  • addrlen:调用时传入期望读取的addr结构体的长度,返回时代表实际读取到的addr结构体的长度,这是一个输入输出型参数。

返回值说明:

  • 获取连接成功将返回一个套接字的文件描述符,获取连接失败返回-1,同时错误码会被设置。

accept函数获取连接是从监听套接字当中获取的,如果accept函数获取连接成功,此时会返回一个套接字对应的文件描述符。

监听套接字与accept函数返回的套接字的作用:

  • 监听套接字:用于获取客户端发来的连接请求。accept函数会不断从监听套接字当中获取新连接。
  • accept函数返回的套接字:用于为本次accept获取到的连接提供网络数据传输的。监听套接字的任务只是不断获取新连接,而真正为这些连接提供数据传输的套接字是accept函数返回的套接字,而不是监听套接字。

accept函数获取连接时可能会失败,但由于TCP服务器不会因为获取某个连接失败而退出,因此服务端获取连接失败后应该继续重新获取连接。

// tcp_server.hpp
class TcpServer
{
public:
    TcpServer(uint16_t port,int quit = true)
        :_port(port), _quit(quit)
    {}
    void Init()
    {
    // ...
    }
  void Start()
    {
        _quit = false;
        struct sockaddr_in client;
        socklen_t len = sizeof(client);
        while (!_quit)
        {
            memset(&client, 0, len);
            // 1. 获取连接
            int sockfd = 0;
            sockfd = accept(_listen_fd, (struct sockaddr*)&client, &len);
            if (sockfd < 0)
            {
                std::cerr << "连接失败,正在尝试重连..." << std::endl;
                sleep(1);
                continue;
            }
            else
            {
                // 2.进行业务处理
                std::string ip = inet_ntoa(client.sin_addr);
                uint16_t port = ntohs(client.sin_port);
                std::string name = ip + " - " + std::to_string(port);
                std::cout << "获取连接成功! " << sockfd << " 来自监听套接字:" << _listen_fd
                    << " | " << name << std::endl;
                Service(sockfd);
            }
        }
    }
  // 业务处理
    void Service(int sockfd)
    {
    // ...
    }
    ~TcpServer()
    {
       // ...
    }
private:
    int _listen_fd;         // 监听套接字
    uint16_t _port;         // 端口号
    bool _quit;             // 表示连接是否退出
};

3、服务端处理请求

现在TCP服务器已经能够获取连接请求了,下面当然就是要对获取到的请求进行处理了,具体怎么处理由你决定,我们这里就假设我们的处理是要进行回声处理,服务端将将客户端发来的数据重新发回给客户端。

由于TCP服务器是面向字节流的,所以我们读取数据的函数可以使用流式接口read,该函数的函数原型如下:

ssize_t read(int fd, void *buf, size_t count);

参数说明:

  • fd:特定的文件描述符,表示从该文件描述符中读取数据。
  • buf:数据的存储位置,表示将读取到的数据存储到该位置。
  • count:数据的个数,表示从该文件描述符中读取数据的字节数。

返回值说明:

  • 如果返回值大于0,则表示本次实际读取到的字节个数。
  • 如果返回值等于0,则表示对端已经把连接关闭了。
  • 如果返回值小于0,则表示读取时遇到了错误。

同理TCP服务器写入数据的函数可以使用流式接口write,该函数的函数原型如下:

ssize_t write(int fd, const void *buf, size_t count);

参数说明:

  • fd:特定的文件描述符,表示将数据写入该文件描述符对应的套接字。
  • buf:需要写入的数据。
  • count:需要写入数据的字节个数。

返回值说明:

  • 写入成功返回实际写入的字节数,写入失败返回-1,同时错误码会被设置。

服务端读取数据是从accept创建的套接字中读取的,而写入数据的时候也是写入accept创建的套接字的。也就是说这里为客户端提供服务的套接字,既可以读取数据也可以写入数据,这就是TCP全双工的通信的体现。

在从服务套接字中读取客户端发来的数据时,如果调用read函数后得到的返回值为0,或者读取出错了,此时就应该直接将服务套接字对应的文件描述符关闭。因为文件描述符本质就是数组的下标,因此文件描述符的资源是有限的,如果我们一直占用,那么可用的文件描述符就会越来越少,因此服务完比以后后要及时关闭对应的文件描述符,否则会导致文件描述符泄漏。

// tcp_server.hpp
class TcpServer
{
  // 回调函数的类型,外部传入一个回调函数,让服务器执行此函数完成任务!
    using func_t = std::function<std::string(std::string)>;
public:
    TcpServer(uint16_t port, func_t func, int quit = true)
        :_port(port), _func(func), _quit(quit)
    {}
    void Init()
    {
    // ...
    }
    void Start()
    {
        // ...       
    }
    void Service(int sockfd)
    {
        char buf[1024];
        while (true)
        {
            int num = read(sockfd, buf, sizeof(buf) - 1);
            if (num > 0)
            {
                buf[num] = '\0';
                // 调用回调函数进行业务处理
                std::string message =  _func(buf);
                std::cout << "receive message : " << buf << std::endl;
                write(sockfd, message.c_str(), message.size());
            }
            else if (num == 0)
            {
                close(sockfd);
                std::cout << "对方关闭了写端, 我也关闭了。" << std::endl;
                break;
            }
            else
            {
                close(sockfd);
                std::cerr << "read fail: " << strerror(errno) << std::endl;
                break;
            }
        }
    }
    ~TcpServer()
    {
       // ...
    }
private:
    int _listen_fd;         // 监听套接字
    uint16_t _port;         // 端口号
    bool _quit;             // 表示连接是否退出
    func_t _func;           // 业务的处理函数
};

服务端的主函数代码:

// tcp_server.cpp
#include <iostream>
#include <memory>
#include "tcp_server.hpp"
// 使用手册
static void Usage(std::string proc)
{
    std::cout << "usage\n\t" << proc << " 端口" << std::endl;
}
// 回声处理
std::string echo(std::string message)
{
    return message;
}
int main(int argc, char* argv[])
{
    if (argc != 2)
    {
        Usage(argv[0]);
        exit(USAGE_ERR);
    }
    uint16_t server_port = atoi(argv[1]);
    std::unique_ptr<TcpServer> up(new TcpServer(server_port, echo));
    up->Init();
    up->Start();
    return 0;
}

4、客户端进行连接

对于TCP客户端的编写与UDP客户端类似,不同的是我们TCP的客户端想要进行网络通信首先要进行connect连接服务器。

// tcp_client
enum
{
    USAGE_ERR = 1,
    SOCKET_ERR,
    BIND_ERR,
    LISTEN_ERR,
    ACCEPT_ERR,
    CONNECT_ERR
};
// 使用手册
static void Usage(std::string proc)
{
    std::cout << "usage\n\t" << proc << " IP 端口" << std::endl;
}
int main(int argc, char* argv[])
{
    if (argc != 3)
    {
        Usage(argv[0]);
        exit(USAGE_ERR);
    }
    uint16_t port = atoi(argv[2]);
    // 1.填充结构体
    struct sockaddr_in server;
    socklen_t len = sizeof(server);
    memset(&server, 0, len);
    server.sin_family = AF_INET;
    server.sin_port = htons(port);
    inet_pton(AF_INET, argv[1], &server.sin_addr.s_addr);
    // 2.创建套接字
    int sockfd = socket(AF_INET, SOCK_STREAM, 0);
    if (sockfd < 0)
    {
        std::cerr << "socket fail: " << strerror(errno) << std::endl;
        exit(SOCKET_ERR);
    }
    // 3. 进行连接
  // ...
    // 4.开始通信
  // ...
    return 0;
}

发起连接请求的函数叫做connect,该函数的函数原型如下:

int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

参数说明:

  • sockfd:特定的套接字,表示通过该套接字发起连接请求。
  • addr:对端网络相关的属性信息,包括协议家族、IP地址、端口号等。
  • addrlen:传入的addr结构体的长度。

返回值说明:

  • 连接或绑定成功返回0,连接失败返回-1,同时错误码会被设置。

客户端是不需要我们自己进行绑定操作,当客户端向服务端发起连接请求时,系统会给客户端随机指定一个端口号进行绑定,此外当我们连接失败时,不需要直接退出,我们可以尝试重新连接,如果实在是连接不上我们才退出。

int main(int argc, char* argv[])
{
    if (argc != 3)
    {
        Usage(argv[0]);
        exit(USAGE_ERR);
    }
    uint16_t port = atoi(argv[2]);
    // 1.填充结构体
    // ...
    // 2.创建套接字
    // ...
    // 3. 进行连接
    int count = 5;
    while (connect(sockfd, (struct sockaddr*)&server, len) != 0)
    {
        std::cout << "连接失败,正在尝试重连...,剩余重连次数 :" << count-- << std::endl;
        if (count < 0)
        {
            std::cerr << "connect fail: " << strerror(errno) << std::endl;
            exit(CONNECT_ERR);
        }
        // 避免此时网络拥堵,短时间内连接过快消耗了所有的连接次数。
        sleep(1);
    }
    // 4.开始通信
    return 0;
}

5、客户端发起通信

由于我们实现的是一个简单的回声服务器,因此当客户端连接到服务端后,客户端就可以向服务端发送数据了,这里我们可以让客户端将用户输入的数据发送给服务端,发送时调用write函数向套接字当中写入数据即可。

当客户端将数据发送给服务端后,由于服务端读取到数据后还会进行回显,因此客户端在发送数据后还需要调用read函数读取服务端的响应数据,然后将该响应数据进行打印,以确定双方通信无误。

int main(int argc, char* argv[])
{
    // ...
    // 4.开始通信
    std::string message;
    char buf[1024];
    while (true)
    {
        std::cout << "please enter >> ";
        std::getline(std::cin, message);
        // 写
        ssize_t num = write(sockfd, message.c_str(), message.size());
        if (num < 0)
        {
            std::cerr << "write fail: " << strerror(errno) << std::endl;
        }
        // 读
        num = read(sockfd, buf, sizeof(buf));
        if (num > 0)
        {
            buf[num] = '\0';
            std::cout << "server echo >> " << buf << std::endl;
        }
        else if(num == 0)
        {
            std::cout << " server quit !" << std::endl;
            break;
        }
        else
        {
            std::cerr << "read fail: " << strerror(errno) << std::endl;
            break;
        }
    }
    close(sockfd);
    return 0;
}

6、通信测试

我们先让服务端先运行,./tcp_server 端口号,然后让客户端再运行./tcp_client IP地址 端口号之后我们就可以进行网络通信了。

注意:我们现在所写的TCP服务器只能够服务一个客户端,因为当服务端的主执行流去执行Service了,就没有办法accept新的连接了,所以我们还要使用多进程或多线程来完善我们的服务端,这里我们就不咋完善了,有兴趣的话你可以将服务器改成多线程版本,给更多的客户端提供服务。

相关文章
|
16天前
|
网络协议 算法 网络性能优化
C语言 网络编程(十五)套接字选项设置
`setsockopt()`函数用于设置套接字选项,如重复使用地址(`SO_REUSEADDR`)、端口(`SO_REUSEPORT`)及超时时间(`SO_RCVTIMEO`)。其参数包括套接字描述符、协议级别、选项名称、选项值及其长度。成功返回0,失败返回-1并设置`errno`。示例展示了如何创建TCP服务器并设置相关选项。配套的`getsockopt()`函数用于获取这些选项的值。
|
16天前
|
网络协议 安全 网络安全
C语言 网络编程(四)常见网络模型
这段内容介绍了目前被广泛接受的三种网络模型:OSI七层模型、TCP五层模型以及TCP/IP四层模型,并简述了多个网络协议的功能与特性,包括HTTP、HTTPS、FTP、DNS、SMTP、TCP、UDP、IP、ICMP、ARP、RARP及SSH协议等,同时提到了ssh的免费开源实现openssh及其在Linux系统中的应用。
|
21天前
|
安全 Java 网络安全
【认知革命】JAVA网络编程新视角:重新定义URL与URLConnection,让网络资源触手可及!
【认知革命】JAVA网络编程新视角:重新定义URL与URLConnection,让网络资源触手可及!
30 2
|
1月前
|
网络协议 Java
一文讲明TCP网络编程、Socket套接字的讲解使用、网络编程案例
这篇文章全面讲解了基于Socket的TCP网络编程,包括Socket基本概念、TCP编程步骤、客户端和服务端的通信过程,并通过具体代码示例展示了客户端与服务端之间的数据通信。同时,还提供了多个案例分析,如客户端发送信息给服务端、客户端发送文件给服务端以及服务端保存文件并返回确认信息给客户端的场景。
一文讲明TCP网络编程、Socket套接字的讲解使用、网络编程案例
|
19天前
|
开发者 图形学 API
从零起步,深度揭秘:运用Unity引擎及网络编程技术,一步步搭建属于你的实时多人在线对战游戏平台——详尽指南与实战代码解析,带你轻松掌握网络化游戏开发的核心要领与最佳实践路径
【8月更文挑战第31天】构建实时多人对战平台是技术与创意的结合。本文使用成熟的Unity游戏开发引擎,从零开始指导读者搭建简单的实时对战平台。内容涵盖网络架构设计、Unity网络API应用及客户端与服务器通信。首先,创建新项目并选择适合多人游戏的模板,使用推荐的网络传输层。接着,定义基本玩法,如2D多人射击游戏,创建角色预制件并添加Rigidbody2D组件。然后,引入网络身份组件以同步对象状态。通过示例代码展示玩家控制逻辑,包括移动和发射子弹功能。最后,设置服务器端逻辑,处理客户端连接和断开。本文帮助读者掌握构建Unity多人对战平台的核心知识,为进一步开发打下基础。
41 0
|
1月前
|
网络协议 Java 关系型数据库
16 Java网络编程(计算机网络+网络模型OSI/TCP/IP+通信协议等)
16 Java网络编程(计算机网络+网络模型OSI/TCP/IP+通信协议等)
69 2
|
2月前
|
缓存 网络协议 Java
(六)网络编程之化身一个请求感受浏览器输入URL后奇妙的网络之旅!
在浏览器上输入一个URL后发生了什么? 这也是面试中老生常谈的话题,包括网上也有大量关于这块的内容。
|
2月前
|
网络协议 Python
告别网络编程迷雾!Python Socket编程基础与实战,让你秒变网络达人!
【7月更文挑战第27天】在网络编程的广阔天地中,Socket编程常被视为一道难关。但用Python这把钥匙,我们可以轻松入门。Socket作为网络通信的基石,在Python中通过`socket`模块封装了底层细节,简化了开发过程。以下是一个基本的TCP服务器与客户端的示例,展示了如何建立连接、收发数据及关闭连接。为了应对实际场景中的并发需求,我们还可以借助多线程技术来提升服务器处理能力。掌握了这些基础知识后,你将逐步揭开网络编程的神秘面纱,踏上编程高手之路!
30 0
|
3月前
|
安全 Java 网络安全
【认知革命】JAVA网络编程新视角:重新定义URL与URLConnection,让网络资源触手可及!
【6月更文挑战第22天】JAVA网络编程中,URL代表统一资源定位符,用于表示网络资源地址。通过`new URL(&quot;address&quot;)`创建URL对象,可解析和访问其组件。URLConnection是与URL建立连接的接口,用于定制HTTP请求,如设置GET/POST、超时及交换数据。
35 1
|
3月前
|
存储 分布式计算 网络协议
什么是网络编程?网络编程的三要素是什么?
在网络通信协议下,不同计算机上运行的程序,进行的数据传输。
45 1