YOLO 施工安全帽目标检测模型

简介: 建筑工地的工人安全是许多建筑行业日益关注的问题。佩戴安全帽可以减少建筑工地工人的伤害,但由于各种原因,安全帽并不总是正确佩戴。因此,基于计算机视觉的自动安全帽检测系统极为重要。许多研究人员已经开发了基于机器和深度学习的头盔检测系统,但很少有人专注于建筑工地的头盔检测。
在线工具推荐: 三维数字孪生场景工具 - GLTF/GLB在线编辑器 - Three.js AI自动纹理化开发 - YOLO 虚幻合成数据生成器 - 3D模型在线转换 -   3D模型预览图生成服务

头盔自动检测基本上是一个物体检测问题,可以使用深度学习和基于计算机视觉的方法来解决。由于深度学习在目标检测领域的计算方法和精度,深度学习及其在计算机视觉中的应用取得了突破性进展。目标识别方法一直是近年来计算机视觉领域的研究热点。目前有两种用于目标检测的先进深度学习方法:基于R-CNN(卷积神经网络)的目标检测算法,该算法首先生成候选区域,然后执行分类或回归,以及You Only Look Once(YOLO)和Single Shot MultiBox Detector(SSD)算法,仅使用一个 CNN 执行分类或回归。基于 R-CNN 的方法实现了相对较高的准确率,但缺点是执行时间较长,因此不适合实时场景。SSD算法运行速度更快,但在检测小物体方面存在问题,这在头盔自动检测中可能是个问题。因此,本研究使用具有不同架构的YOLO来自动检测建筑工地上的安全帽。

本文介绍了一种基于YOLO的实时计算机视觉自动安全帽检测系统。YOLO架构速度快,每秒可处理45帧,使基于YOLO的架构可用于实时安全帽检测。本研究使用包含 5000 张安全帽图像的基准数据集,分别以 60:20:20 (%) 的比例进一步划分,用于训练、测试和验证。实验结果表明,YOLOv5x架构实现了92.44%的最佳平均精度(mAP),即使在弱光条件下也能显示出优异的安全帽检测效果。

在本文章,将使用UnrealSynth虚幻合成数据生成器 来生成训练所需要的数据集,用户只需要将安全帽的3D模型导入UnrealSynth中,经过简单的配置就可以自动生成数据集,非常的简单方便:

基于YOLO的实时计算机视觉自动安全帽检测:

1. 场景准备

  • 将戴有安全帽和未戴安全帽的工人模型导入到场景。
  • 配置场景先关参数,如:生成的图片数据集的图片分辨率、生成的图片的数量等。

2. 生成数据集

设置参数后,点击【确定】后会在本地目录中...\UnrealSynth\Windows\UnrealSynth\Content\UserData 生成本地合成数据集,本地数据包含两个文件夹以及一个 yaml 文件:images、labels、test.yaml 文件;images中存放着生成的图片数据集,labels中存放着生成的标注数据集。

images和labels目录下各有两个目录:train 和 val,train 目录表示训练数据目录,val 表示验证数据目录,标注数据的格式如下所示:

0 0.68724 0.458796 0.024479 0.039815
0 0.511719 0.504167 0.021354 0.034259
0 0.550781 0.596759 0.039062 0.04537
0 0.549219 0.368519 0.023438 0.044444
0 0.47526 0.504167 0.009896 0.030556
0 0.470313 0.69537 0.027083 0.035185
0 0.570052 0.499074 0.016146 0.040741
0 0.413542 0.344444 0.022917 0.037037
0 0.613802 0.562037 0.015104 0.027778
0 0.477344 0.569444 0.017188 0.016667

synth.yaml是数据的配置文件,数据格式如下:

path:
train: images
val: images
test:
names:
 0: Safety helmet

3、YOLOv5模型训练

生成数据集后,下一步就是利用Yolo来训练模型,第一步,打开 ultralytics hub 在线训练工具,将刚才生成的数据集上传到ultralytics hub

将合成数据上传后,选择YOLO模型版本,确定好YOLO模型版本后,点击【continue】就可以开始使用ultralytics来训练集我们的模型了,如下所示:

选择YOLO模型后点击下一步将会生成用户key值,这个key值将在下一步模型训练时用到

复制【step1】中中的内容,点击【step2】进入到google Colab页面,如下所示:

首先,先点击step中的播放按钮,安装环境依赖,如上图所示;环境安装成功后,接下来将【Start】中的整个内容给都换掉,用在上一步中复制的key值整体替换里面原来的信息,如图:

然后点击播放按钮,开始训练模型,如下图所示:

模型训练需要一段时间...

4、训练模型验证

模型训练完成之后,可以用训练好的模型验证一下,用几张工地工人干活的场景图片,导入用图片来验证一下,操作步骤如图所示:

图片验证结果如下:


转载:https://www.mvrlink.com/yolo-construction-safety-helmet-target-detection-model/

目录
相关文章
|
2月前
|
机器学习/深度学习 存储 自动驾驶
探索深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用,分析了其背后的原理、当前的成就以及面临的主要挑战。通过具体案例分析,揭示了深度学习模型如何从复杂的图像数据中学习到有效的特征表示,以及这些技术进步如何推动计算机视觉领域的发展。同时,文章也讨论了深度学习模型训练过程中的数据依赖性、过拟合问题、计算资源需求等挑战,并提出了未来研究的可能方向。
64 3
|
3月前
|
机器学习/深度学习 数据采集 人工智能
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用,分析了其背后的原理、优势以及面临的主要挑战。通过对比传统图像识别方法,本文揭示了深度学习如何革新这一领域,并展望了未来的发展趋势。文章还详细讨论了数据质量、模型复杂度和计算资源等关键因素对图像识别性能的影响,为相关研究人员提供了宝贵的参考。
|
3月前
|
机器学习/深度学习 人工智能 计算机视觉
深度学习在图像识别中的应用与挑战####
本文深入探讨了深度学习技术在图像识别领域的革命性进展,特别是卷积神经网络(CNN)的架构创新、优化策略及面临的挑战。通过综述经典CNN架构如AlexNet、VGG、ResNet的发展历程,揭示了深度学习如何不断突破性能瓶颈,实现图像识别准确率的飞跃。文章还详细阐述了数据增强、迁移学习等策略在提升模型泛化能力方面的关键作用,并讨论了过拟合、计算资源依赖等核心挑战,为未来研究提供了方向指引。 ####
|
9月前
|
机器学习/深度学习 人工智能 边缘计算
深度学习在图像识别中的应用及挑战
【4月更文挑战第27天】 随着人工智能的迅猛发展,深度学习技术在图像识别领域取得了显著成就,不仅推动了自动驾驶、医疗诊断等行业的进步,也为个人用户带来了更加便捷的生活体验。本文将深入探讨深度学习在图像识别中的核心应用,分析其面临的主要挑战,并展望该领域的未来发展方向。通过梳理现有文献和最新研究成果,我们旨在为读者提供一个全面、深入的视角,以理解深度学习如何改变我们处理和解析视觉信息的方式。
|
6月前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习在图像识别中的应用与挑战深度学习在图像识别中的应用与挑战
【8月更文挑战第30天】本文深入探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过具体案例,揭示了深度学习如何革新图像处理和分析的方式,同时指出了数据偏差、模型泛化能力等关键问题,为未来研究提供了方向。
|
6月前
|
机器学习/深度学习 传感器 人工智能
深度学习在图像识别领域的应用与挑战
【8月更文挑战第21天】本文将深入探讨深度学习技术在图像识别领域中的应用及其面临的挑战。我们将从深度学习的基本概念出发,逐步分析其在图像识别中的作用,并讨论当前技术的局限性和未来的发展方向。通过本文,读者将获得对深度学习在图像处理方面应用的全面理解,以及对其潜在问题的深刻认识。
|
8月前
|
机器学习/深度学习 人工智能 监控
深度学习在图像识别中的应用与挑战
【6月更文挑战第25天】 本文深入探讨了深度学习技术,尤其是卷积神经网络(CNN)在图像识别领域的应用及其面临的挑战。通过分析深度学习模型在处理复杂图像数据时的强大能力,以及在实际部署中遇到的困难,如过拟合、数据集偏差和计算资源限制,本文旨在为读者提供一个关于如何优化模型性能和克服技术难题的全面视角。
|
9月前
|
机器学习/深度学习 计算机视觉 异构计算
深度学习在图像识别中的应用及其挑战
【5月更文挑战第27天】 随着人工智能技术的飞速发展,深度学习在图像识别领域取得了显著的成果。然而,尽管深度学习模型在图像识别任务上取得了很高的准确率,但仍然面临着诸多挑战,如数据不平衡、计算资源消耗大、模型泛化能力差等问题。本文将探讨深度学习在图像识别中的应用,分析其面临的挑战,并提出一些可能的解决方案。
|
9月前
|
机器学习/深度学习 算法 安全
基于深度学习的图像识别技术进展
【5月更文挑战第28天】 在当今信息爆炸的时代,图像数据的自动解读和处理成为了计算机视觉领域的核心课题。本文综述了基于深度学习的图像识别技术的最新进展,包括卷积神经网络(CNN)的变体、目标检测算法、图像分割方法以及无监督学习策略。我们着重分析了这些技术如何提高模型的泛化能力,减少对标注数据的依赖,并在特定应用场景中实现超越人类的识别精度。此外,还探讨了当前技术面临的主要挑战,如对抗性攻击、数据偏见和计算资源需求等。
|
机器学习/深度学习 并行计算 计算机视觉
YOLOv5入门实践(5)——从零开始,手把手教你训练自己的目标检测模型(包含pyqt5界面)
YOLOv5入门实践(5)——从零开始,手把手教你训练自己的目标检测模型(包含pyqt5界面)
7844 1