数据结构-栈和队列(一)

简介: 数据结构-栈和队列(一)

1.栈

1.1 栈的概念及结构

栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶,另一端称为栈底。栈中的数据元素遵守后进先出的原则。

压栈:栈的插入操作叫做进栈/压栈/入栈,入数据在栈顶

出栈:栈的删除操作叫做出栈。出数据也在栈顶

数据进栈出栈遵循后进先出的原则:

下面看两道例题:

1.一个栈的初始状态为空。现将元素1、2、3、4、5、A、B、C、D、E依次入栈,然后再依次出栈,则元素出栈的顺序是( )。

A 12345ABCDE

B EDCBA54321

C ABCDE12345

D 54321EDCBA

答案是B。

2.若进栈序列为 1,2,3,4 ,进栈过程中可以出栈,则下列不可能的一个出栈序列是()
A 1,4,3,2
B 2,3,4,1
C 3,1,4,2
D 3,4,2,1

答案是C。

这道题说可以在进栈的过程中出栈,ABD不用说,只有C,先出栈的是3,说明此时栈里面1和2肯定还在,而1不可能在2之前出栈,所以选C。

1.2 栈的实现

实现栈有两种方式,一种是数组栈,一种是链式栈

这里我们采用数组栈,因为数组在尾插的代价比较小。

首先,我们来定义一个结构体:

typedef int STDatatype;
typedef struct Stack
{
  STDatatype* a;
  int top;//栈顶元素位置
  int capacity;//容量
}ST;

下面我们来实现栈:

初始化栈:

初始化很简单,但要注意断言pst是否为空。(pst是结构体变量的地址,永远不为空,所以需要断言

void STInit(ST* pst)
{
  assert(pst);
  pst->a = NULL;
  pst->top = 0;//指向栈顶元素的下一个位置
  pst->capacity = 0;
}

入栈:

入栈时,我们要为栈开辟空间,然后才能插入数据。由于只有入栈需要开辟空间,所以这里我们并没有封装开辟空间的函数,直接在入栈函数里面开辟空间就行。

pst->top=pst->capacity=0时,说明此时还没有就开辟空间,所以我们给它开辟4个字节大小。下次再进去,不等于0,空间就增容到上次的2倍。

void STPush(ST* pst, STDatatype x)
{
  //开辟空间
  if (pst->top == pst->capacity)
  {
    int newcapacity = pst->capacity == 0 ? 4 : (pst->capacity) * 2;
    STDatatype* tmp = (STDatatype*)realloc(pst->a, sizeof(STDatatype) * newcapacity);
    if (tmp == NULL)
    {
      perror("malloc fail");
      return;
    }
    pst->a = tmp;
    pst->capacity = newcapacity;
  }
  //插入
  pst->a[pst->top] = x;
  pst->top++;
}

判空函数:

bool STEmpty(ST* pst)
{
  assert(pst);
  return pst->top == 0;
}

出栈:

出栈只需要将pst->top--即可,但是注意要断言此时的栈不能为空。

STEmpty函数是用来判断栈是否为空,它的返回值类型是bool型,bool型返回true或false,当pst->top=0时,说明此时栈为空,返回true,取反!true为假,断言报错。

bool STEmpty(ST* pst)
{
  assert(pst);
  return pst->top == 0;
}
void STPop(ST* pst)
{
  assert(pst);
  assert(!STEmpty(pst));
  pst->top--;
}

获取栈顶元素:

直接返回栈顶元素即可,pst->top是栈顶元素的下一个位置,所以要返回pst->top-1处的值。

STDatatype STTop(ST* pst)
{
  assert(pst);
  assert(!STEmpty(pst));
  return pst->a[pst->top - 1];
}

获取栈中有效元素的个数:

int STSize(ST* pst)
{
  assert(pst);
  return pst->top;
}

销毁栈:

因为是数组栈,所以直接free数组名即可。

void STDestory(ST* pst)
{
  assert(pst);
  assert(!STEmpty(pst));
  free(pst->a);
  pst->a = NULL;
  pst->top = pst->capacity = 0;
}

完整代码:

test.c

#define  _CRT_SECURE_NO_WARNINGS 1
#include"Stack.h"
STTest1()
{
  ST st;
  STInit(&st);
  STPush(&st, 1);
  STPush(&st, 2);
  printf("%d ", STTop(&st));
  STPop(&st);
  STPush(&st, 3);
  STPush(&st, 4);
  STPush(&st, 5);
  while (!STEmpty(&st))
  {
    printf("%d ", STTop(&st));
    STPop(&st);
  }
  STDestory(&st);
}
int main()
{
  STTest1();
  return 0;
}

Stack.h

#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>
typedef int STDatatype;
typedef struct Stack
{
  STDatatype* a;
  int top;
  int capacity;
}ST;
//初始化栈
void STInit(ST* pst);
//入栈
void STPush(ST* pst, STDatatype x);
//出栈
void STPop(ST* pst);
//判空
bool STEmpty(ST* pst);
//获取栈顶元素
STDatatype STTop(ST* pst);
//获取栈中有效元素个数
int STSize(ST* pst);
//销毁栈
void STDestory(ST* pst);

Stack.c

#define  _CRT_SECURE_NO_WARNINGS 1
#include"Stack.h"
//初始化栈
void STInit(ST* pst)
{
  assert(pst);
  pst->a = NULL;
  pst->top = 0;
  pst->capacity = 0;
}
//入栈
void STPush(ST* pst, STDatatype x)
{
  //开辟空间
  if (pst->top == pst->capacity)
  {
    int newcapacity = pst->capacity == 0 ? 4 : (pst->capacity) * 2;
    STDatatype* tmp = (STDatatype*)realloc(pst->a, sizeof(STDatatype) * newcapacity);
    if (tmp == NULL)
    {
      perror("malloc fail");
      return;
    }
    pst->a = tmp;
    pst->capacity = newcapacity;
  }
  //插入
  pst->a[pst->top] = x;
  pst->top++;
}
//判空函数
bool STEmpty(ST* pst)
{
  assert(pst);
  return pst->top == 0;
}
//出栈
void STPop(ST* pst)
{
  assert(pst);
  assert(!STEmpty(pst));
  pst->top--;
}
//获取栈顶元素
STDatatype STTop(ST* pst)
{
  assert(pst);
  assert(!STEmpty(pst));
  return pst->a[pst->top - 1];
}
//获取栈中有效数据的个数
int STSize(ST* pst)
{
  assert(pst);
  return pst->top;
}
//销毁栈
void STDestory(ST* pst)
{
  assert(pst);
  assert(!STEmpty(pst));
  free(pst->a);
  pst->a = NULL;
  pst->top = pst->capacity = 0;
}

测试:

2. 队列

2.1 队列的概念及结构

队列:只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列中的元素遵循先进先出的原则

入队列:进行插入操作的一端称为队尾

出队列:进行删除操作的一端称为队头

队列很好理解,就像在食堂打饭一样,先排进队的先打饭,打完饭先走,

2.2 队列的实现

要实现队列,最好使用链表的方式,因为数组头删效率比较低。

我们先来定义一个结构体:

typedef int QDatatype;
typedef struct QueueNode
{
  struct QueueNode* next;
  QDatatype data;
}QNode;

很明显,这是个单链表,我们要实现队列,还要知道队列的头和尾,以及队列中有效数据的个数,所以索性把它们也定义成一个结构体:

typedef struct Queue
{
  QNode* phead;
  QNode* ptail;
  int size;
}Queue;

phead就是队列的头,ptail就是队列的尾

下面我们来实现队列吧。

队列的初始化:

//初始化队列
void QueueInit(Queue* pq)
{
  pq->phead = NULL;
  pq->ptail = NULL;
  pq->size = 0;
}

队尾入队列:

和栈相似,在入队函数内部开辟空间,这其实就是单链表的尾插(不带哨兵位)。

//队尾入队列
void QueuePush(Queue* pq, QDatatype x)
{
  assert(pq);
  QNode* newnode = (QNode*)malloc(sizeof(QNode));
  if (newnode == NULL)
  {
    perror("malloc fail");
    return;
  }
  newnode->data = x;
  newnode->next = NULL;
  if (pq->ptail == NULL)
  {
    assert(pq->phead == NULL);
    pq->phead = pq->ptail=newnode;
  }
  else
  {
    pq->ptail->next = newnode;
    pq->ptail = newnode;
  }
  pq->size++;
}

判空函数:

bool QueueEmpty(Queue* pq)
{
  assert(pq);
  return pq->size ==0 ;
}

队头出队列:

这相当于单链表的头删,注意分情况,一个节点和多个节点要单独写,同时要用判空函数QueueEmpty()断言队列是否为空。

//队头出队列
void QueuePop(Queue* pq)
{
  assert(pq);
  assert(!QueueEmpty(pq));
  //一个节点
  //多个节点
  if (pq->phead->next == NULL)
  {
    free(pq->phead);
    pq->phead = pq->ptail= NULL;
  }
  else
  {
    QNode* next = pq->phead->next;
    free(pq->phead);
    pq->phead = next;
  }
  pq->size--;
}

获取队列头部元素:

//获取队列头部元素
QDatatype QueueFront(Queue* pq)
{
  assert(pq);
  assert(!QueueEmpty(pq));
  return pq->phead->data;
}

获取队列尾部元素:

//获取队列尾部元素
QDatatype QueueBack(Queue* pq)
{
  assert(pq);
  assert(!QueueEmpty(pq));
  return pq->ptail->data;
}

获取队列中有效元素个数:

//获取队列中有效元素个数
int Queuesize(Queue* pq)
{
  assert(pq);
  return pq->size;
}

销毁队列:

//销毁队列
void DestoryQueue(Queue* pq)
{
  assert(pq);
  while (pq->phead)
  {
    QNode* next = pq->phead->next;
    free(pq->phead);
    pq->phead = next;
  }
  pq->phead = pq->ptail = NULL;
  pq->size = 0;
}

完整代码:

test.c

#define  _CRT_SECURE_NO_WARNINGS 1
#include"Queue.h"
QueueTest1()
{
  Queue pq;
  QueueInit(&pq);
  QueuePush(&pq, 1);
  QueuePush(&pq, 2);
  QueuePop(&pq);
  printf("%d ", QueueFront(&pq));
  QueuePush(&pq, 3);
  QueuePush(&pq, 4);
  printf("%d ", QueueBack(&pq));
  while (!QueueEmpty(&pq))
  {
    printf("%d ", QueueFront(&pq));
    QueuePop(&pq);
  }
  DestoryQueue(&pq);
}
int main()
{
  QueueTest1();
  return 0;
}

Queue.h

#pragma once
#include<stdio.h>
#include<assert.h>
#include<stdbool.h>
#include<stdlib.h>
typedef int QDatatype;
typedef struct QueueNode
{
  struct QueueNode* next;
  QDatatype data;
}QNode;
typedef struct Queue
{
  QNode* phead;
  QNode* ptail;
  int size;
}Queue;
//初始化队列
void QueueInit(Queue* pq);
//队尾入队列
void QueuePush(Queue* pq, QDatatype x);
//队头出队列
void QueuePop(Queue* pq);
//获取队列头部元素
QDatatype QueueFront(Queue* pq);
//获取队列尾部元素
QDatatype QueueBack(Queue* pq);
//获取队列中有效元素个数
int Queuesize(Queue* pq);
//判空
bool QueueEmpty(Queue* pq);
//销毁队列
void DestoryQueue(Queue* pq);

Queue.c

#define  _CRT_SECURE_NO_WARNINGS 1
#include"Queue.h"
//初始化队列
void QueueInit(Queue* pq)
{
  pq->phead = NULL;
  pq->ptail = NULL;
  pq->size = 0;
}
//队尾入队列
void QueuePush(Queue* pq, QDatatype x)
{
  assert(pq);
  QNode* newnode = (QNode*)malloc(sizeof(QNode));
  if (newnode == NULL)
  {
    perror("malloc fail");
    return;
  }
  newnode->data = x;
  newnode->next = NULL;
  if (pq->ptail == NULL)
  {
    assert(pq->phead == NULL);
    pq->phead = pq->ptail=newnode;
  }
  else
  {
    pq->ptail->next = newnode;
    pq->ptail = newnode;
  }
  pq->size++;
}
//判空函数
bool QueueEmpty(Queue* pq)
{
  assert(pq);
  return pq->size ==0 ;
}
//队头出队列
void QueuePop(Queue* pq)
{
  assert(pq);
  assert(!QueueEmpty(pq));
  //一个节点
  //多个节点
  if (pq->phead->next == NULL)
  {
    free(pq->phead);
    pq->phead = pq->ptail= NULL;
  }
  else
  {
    QNode* next = pq->phead->next;
    free(pq->phead);
    pq->phead = next;
  }
  pq->size--;
}
//获取队列头部元素
QDatatype QueueFront(Queue* pq)
{
  assert(pq);
  assert(!QueueEmpty(pq));
  return pq->phead->data;
}
//获取队列尾部元素
QDatatype QueueBack(Queue* pq)
{
  assert(pq);
  assert(!QueueEmpty(pq));
  return pq->ptail->data;
}
//获取队列中有效元素个数
int Queuesize(Queue* pq)
{
  assert(pq);
  return pq->size;
}
//销毁队列
void DestoryQueue(Queue* pq)
{
  assert(pq);
  while (pq->phead)
  {
    QNode* next = pq->phead->next;
    free(pq->phead);
    pq->phead = next;
  }
  pq->phead = pq->ptail = NULL;
  pq->size = 0;
}

测试:

以上就是栈和队列的实现了,下一节我们讲几个栈和队列QJ题,

未完待续。。。

目录
相关文章
|
3天前
|
存储 Java
【数据结构】优先级队列(堆)从实现到应用详解
本文介绍了优先级队列的概念及其底层数据结构——堆。优先级队列根据元素的优先级而非插入顺序进行出队操作。JDK1.8中的`PriorityQueue`使用堆实现,堆分为大根堆和小根堆。大根堆中每个节点的值都不小于其子节点的值,小根堆则相反。文章详细讲解了如何通过数组模拟实现堆,并提供了创建、插入、删除以及获取堆顶元素的具体步骤。此外,还介绍了堆排序及解决Top K问题的应用,并展示了Java中`PriorityQueue`的基本用法和注意事项。
16 5
【数据结构】优先级队列(堆)从实现到应用详解
|
9天前
|
存储 人工智能 C语言
数据结构基础详解(C语言): 栈的括号匹配(实战)与栈的表达式求值&&特殊矩阵的压缩存储
本文首先介绍了栈的应用之一——括号匹配,利用栈的特性实现左右括号的匹配检测。接着详细描述了南京理工大学的一道编程题,要求判断输入字符串中的括号是否正确匹配,并给出了完整的代码示例。此外,还探讨了栈在表达式求值中的应用,包括中缀、后缀和前缀表达式的转换与计算方法。最后,文章介绍了矩阵的压缩存储技术,涵盖对称矩阵、三角矩阵及稀疏矩阵的不同压缩存储策略,提高存储效率。
|
11天前
|
存储 C语言
数据结构基础详解(C语言): 栈与队列的详解附完整代码
栈是一种仅允许在一端进行插入和删除操作的线性表,常用于解决括号匹配、函数调用等问题。栈分为顺序栈和链栈,顺序栈使用数组存储,链栈基于单链表实现。栈的主要操作包括初始化、销毁、入栈、出栈等。栈的应用广泛,如表达式求值、递归等场景。栈的顺序存储结构由数组和栈顶指针构成,链栈则基于单链表的头插法实现。
|
12天前
|
Java
【数据结构】栈和队列的深度探索,从实现到应用详解
本文介绍了栈和队列这两种数据结构。栈是一种后进先出(LIFO)的数据结构,元素只能从栈顶进行插入和删除。栈的基本操作包括压栈、出栈、获取栈顶元素、判断是否为空及获取栈的大小。栈可以通过数组或链表实现,并可用于将递归转化为循环。队列则是一种先进先出(FIFO)的数据结构,元素只能从队尾插入,从队首移除。队列的基本操作包括入队、出队、获取队首元素、判断是否为空及获取队列大小。队列可通过双向链表或数组实现。此外,双端队列(Deque)支持两端插入和删除元素,提供了更丰富的操作。
14 0
【数据结构】栈和队列的深度探索,从实现到应用详解
|
16天前
|
Linux C++ Windows
栈对象返回的问题 RVO / NRVO
具名返回值优化((Name)Return Value Optimization,(N)RVO)是一种优化机制,在函数返回对象时,通过减少临时对象的构造、复制构造及析构调用次数来降低开销。在C++中,通过直接在返回位置构造对象并利用隐藏参数传递地址,可避免不必要的复制操作。然而,Windows和Linux上的RVO与NRVO实现有所不同,且接收栈对象的方式也会影响优化效果。
|
1月前
|
存储 安全 编译器
缓冲区溢出之栈溢出(Stack Overflow
【8月更文挑战第18天】
55 3
|
18天前
crash —— 获取内核地址布局、页大小、以及栈布局
crash —— 获取内核地址布局、页大小、以及栈布局
|
19天前
|
存储 程序员 C语言
堆和栈之间有什么区别
【9月更文挑战第1天】堆和栈之间有什么区别
89 0
|
28天前
|
机器学习/深度学习 消息中间件 缓存
栈与队列的实现
栈与队列的实现
37 0
|
1月前
|
算法 C语言 C++
【practise】栈的压入和弹出序列
【practise】栈的压入和弹出序列