Canal+Kafka实现MySQL与Redis数据同步(一)

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 Tair(兼容Redis),内存型 2GB
简介: Canal+Kafka实现MySQL与Redis数据同步

前言

在很多业务情况下,我们都会在系统中加入redis缓存做查询优化。

如果数据库数据发生更新,这时候就需要在业务代码中写一段同步更新redis的代码。

这种数据同步的代码跟业务代码糅合在一起会不太优雅,能不能把这些数据同步的代码抽出来形成一个独立的模块呢,答案是可以的。

架构图

canal是一个伪装成slave订阅mysql的binlog,实现数据同步的中间件。

canal最简单的使用方法,是tcp模式。

实际上canal是支持直接发送到MQ的,目前最新版是支持主流的三种MQ:Kafka、RocketMQ、RabbitMQ。而canal的RabbitMQ模式目前是有一定的bug,所以一般使用Kafka或者RocketMQ。

这里使用Kafka,实现Redis与MySQL的数据同步。架构图如下:

通过架构图,我们很清晰知道要用到的组件:MySQL、Canal、Kafka、ZooKeeper、Redis。

搭建Kafka

首先在官网下载安装包:

解压,打开/config/server.properties配置文件,修改日志目录:

log.dirs=./logs

首先启动ZooKeeper,我用的是3.6.1版本:

接着再启动Kafka,在Kafka的bin目录下打开cmd,输入命令:

kafka-server-start.bat ../../config/server.properties

可以看到ZooKeeper上注册了Kafka相关的配置信息:

然后创建一个队列,用于接收canal传送过来的数据,使用命令:

kafka-topics.bat --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic canaltopic

创建的队列名是canaltopic

配置Cannal Server

canal官网下载相关安装包:

找到canal.deployer-1.1.4/conf目录下的canal.properties配置文件:

# tcp, kafka, RocketMQ 这里选择kafka模式
canal.serverMode = kafka
# 解析器的线程数,打开此配置,不打开则会出现阻塞或者不进行解析的情况
canal.instance.parser.parallelThreadSize = 16
# 配置MQ的服务地址,这里配置的是kafka对应的地址和端口
canal.mq.servers = 127.0.0.1:9092
# 配置instance,在conf目录下要有example同名的目录,可以配置多个
canal.destinations = example

然后配置instance,找到/conf/example/instance.properties配置文件:

## mysql serverId , v1.0.26+ will autoGen(自动生成,不需配置)
# canal.instance.mysql.slaveId=0
# position info
canal.instance.master.address=127.0.0.1:3306
# 在Mysql执行 SHOW MASTER STATUS;查看当前数据库的binlog
canal.instance.master.journal.name=mysql-bin.000006
canal.instance.master.position=4596
# 账号密码
canal.instance.dbUsername=canal
canal.instance.dbPassword=Canal@****
canal.instance.connectionCharset = UTF-8
#MQ队列名称
canal.mq.topic=canaltopic
#单队列模式的分区下标
canal.mq.partition=0

配置完成后,就可以启动canal了。

测试

这时可以打开kafka的消费者窗口,测试一下kafka是否收到消息。

使用命令进行监听消费:

kafka-console-consumer.bat --bootstrap-server 127.0.0.1:9092 --from-beginning --topic canaltopic

这里使用的是win10系统的cmd命令行,win10系统默认的编码是GBK,而Canal Server是UTF-8的编码,所以控制台会出现乱码:

在cmd命令行执行前切换到UTF-8编码即可,使用命令行:chcp 65001

然后再执行打开kafka消费端的命令,就不乱码了:

接下来就是启动Redis,把数据同步到Redis就完事了。

封装Redis客户端

环境搭建完成后,我们可以写代码了。

首先引入Kafka和Redis的maven依赖:

<dependency>
    <groupId>org.springframework.kafka</groupId>
    <artifactId>spring-kafka</artifactId>
</dependency>
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

在application.yml文件增加以下配置:

spring:  
  redis:
    host: 127.0.0.1
    port: 6379
    database: 0
    password: 123456

封装一个操作Redis的工具类:

@Component
public class RedisClient {
    /**
     * 获取redis模版
     */
    @Resource
    private StringRedisTemplate stringRedisTemplate;
    /**
     * 设置redis的key-value
     */
    public void setString(String key, String value) {
        setString(key, value, null);
    }
    /**
     * 设置redis的key-value,带过期时间
     */
    public void setString(String key, String value, Long timeOut) {
        stringRedisTemplate.opsForValue().set(key, value);
        if (timeOut != null) {
            stringRedisTemplate.expire(key, timeOut, TimeUnit.SECONDS);
        }
    }
    /**
     * 获取redis中key对应的值
     */
    public String getString(String key) {
        return stringRedisTemplate.opsForValue().get(key);
    }
    /**
     * 删除redis中key对应的值
     */
    public Boolean deleteKey(String key) {
        return stringRedisTemplate.delete(key);
    }
}


相关文章
|
3月前
|
SQL DataWorks 关系型数据库
DataWorks操作报错合集之如何处理数据同步时(mysql->hive)报:Render instance failed
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
|
1月前
|
监控 关系型数据库 MySQL
深入了解MySQL主从复制:构建高效稳定的数据同步架构
深入了解MySQL主从复制:构建高效稳定的数据同步架构
112 1
|
1月前
|
消息中间件 关系型数据库 MySQL
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
120 0
|
2月前
|
canal 消息中间件 关系型数据库
Canal作为一款高效、可靠的数据同步工具,凭借其基于MySQL binlog的增量同步机制,在数据同步领域展现了强大的应用价值
【9月更文挑战第1天】Canal作为一款高效、可靠的数据同步工具,凭借其基于MySQL binlog的增量同步机制,在数据同步领域展现了强大的应用价值
567 4
|
3月前
|
关系型数据库 MySQL 数据库
【MySQL】手把手教你MySQL数据同步
【MySQL】手把手教你MySQL数据同步
|
22天前
|
消息中间件 NoSQL 关系型数据库
一文彻底搞定Redis与MySQL的数据同步
【10月更文挑战第21天】本文介绍了 Redis 与 MySQL 数据同步的原因及实现方式。同步的主要目的是为了优化性能和保持数据一致性。实现方式包括基于数据库触发器、应用层双写和使用消息队列。每种方式都有其优缺点,需根据具体场景选择合适的方法。此外,文章还强调了数据同步时需要注意的数据一致性、性能优化和异常处理等问题。
226 0
|
3月前
|
消息中间件 数据采集 关系型数据库
大数据-业务数据采集-FlinkCDC 读取 MySQL 数据存入 Kafka
大数据-业务数据采集-FlinkCDC 读取 MySQL 数据存入 Kafka
53 1
|
3月前
|
SQL 关系型数据库 MySQL
“震撼揭秘!Flink CDC如何轻松实现SQL Server到MySQL的实时数据同步?一招在手,数据无忧!”
【8月更文挑战第7天】随着大数据技术的发展,实时数据同步变得至关重要。Apache Flink作为高性能流处理框架,在实时数据处理领域扮演着核心角色。Flink CDC(Change Data Capture)组件的加入,使得数据同步更为高效。本文介绍如何使用Flink CDC实现从SQL Server到MySQL的实时数据同步,并提供示例代码。首先确保SQL Server启用了CDC功能,接着在Flink环境中引入相关连接器。通过定义源表与目标表,并执行简单的`INSERT INTO SELECT`语句,即可完成数据同步。
311 1
|
3月前
|
SQL canal 关系型数据库
(二十四)全解MySQL之主从篇:死磕主从复制中数据同步原理与优化
兜兜转转,经过《全解MySQL专栏》前面二十多篇的内容讲解后,基本对MySQL单机模式下的各方面进阶知识做了详细阐述,同时在前面的《分库分表概念篇》、《分库分表隐患篇》两章中也首次提到了数据库的一些高可用方案,但前两章大多属于方法论,并未涵盖真正的实操过程。接下来的内容,会以目前这章作为分割点,开启MySQL高可用方案的落地实践分享的新章程!
1506 1
|
3月前
|
canal 关系型数据库 MySQL
"揭秘阿里数据同步黑科技Canal:从原理到实战,手把手教你玩转MySQL数据秒级同步,让你的数据处理能力瞬间飙升,成为技术界的新晋网红!"
【8月更文挑战第18天】Canal是一款由阿里巴巴开源的高性能数据同步系统,它通过解析MySQL的增量日志(Binlog),提供低延迟、可靠的数据订阅和消费功能。Canal模拟MySQL Slave与Master间的交互协议来接收并解析Binary Log,支持数据的增量同步。配置简单直观,包括Server和Instance两层配置。在实战中,Canal可用于数据库镜像、实时备份等多种场景,通过集成Canal Client可实现数据的消费和处理,如更新缓存或写入消息队列。
715 0