纯C手写内存池

简介: 纯C手写内存池

为什么要使用内存池

  为什么要用内存池?首先,在7 * 24h的服务器中如果不使用内存池,而使用malloc和free,那么就非常容易产生内存碎片,早晚都会申请内存失败;其次在比较复杂的代码或者继承的屎山中,非常容易出现内存泄漏导致oom的问题;最后不使用内存池可能会频繁的进行malloc、free等系统调用,开销比较大。

  为了解决这三个问题,内存池就应运而生了。内存池预先分配一大块内存来做一个内存池,业务中的内存分配和释放都由这个内存池来管理,内存池内的内存不足时其内部会自己申请。所以内存碎片的问题就交由内存池的算法来优化,频繁的malloc、free等系统调用也能减少,而内存泄漏的问题只需要遵守内存池提供的api,就非常容易避免内存泄漏了。

  即使出现了内存泄漏,排查的思路也很清晰。1.检查是不是内存池的问题;2.如果不是内存池的问题,就检查是不是第三方库的内存泄漏。

内存池的使用场景

  1. 全局内存池(可以使用开源的tcmalloc/jemalloc)
  2. 一个连接一个内存池(本文实现这个场景的内存池)

设计一个内存池

总体介绍

  由于本文是一个连接一个内存池,所以后续介绍和代码都是以4k为分界线,大于4k的我们认为是大块内存;小于4k的我们认为是小块内存。并且注意这里的4k,并不是严格遵照4096,而是在描述上,用4k比较好描述。

  在真正使用内存之前,内存池提前分配一定数量且大小相等的内存块以作备用,当真正被用户调用api分配内存的时候,直接从内存块中获取内存(指小块内存),当内存块不够用了,再有内存池取申请新的内存块。而如果是需要大块内存,则内存池直接申请大块内存再返回给用户。

  内存池:就是将这些提前申请的内存块组织管理起来的数据结构,内存池实现原理主要分为分配,回收,扩容三部分。

  内存池原理之小块内存分配=> 内存池预申请一块4k的内存块,这里称为block,即block=4k内存块。当用户向内存池申请内存size小于4k时,内存池从block的空间中划分出去size空间,当再有新申请时,再划分出去。扩容=> 直到block中的剩余空间不足以分配size大小,那么此时内存池会再次申请一块block,再从新的block中划分size空间给用户。回收=> 每一次申请小内存,都会在对应的block中引用计数加1,每一次释放小内存时,都会在block中引用计数减1,只有当引用计数为零的时候,才会回收block使他重新成为空闲空间,以便重复利用空间。这样,内存池避免频繁向内核申请/释放内存,从而提高系统性能。

  内存池原理之大块内存分配=> 因为大块内存是大于4k的,所以内存池不预先申请内存,也就是用户申请的时候,内存池再申请内存,然后返回给用户。扩容=> 大块内存不存在扩容。回收=> 对于大块内存来说,回收就直接free掉即可。

  上面理论讲完了,下面来介绍如何管理小块内存和大块内存。

小块内存的分配与管理

  在创建内存池的时候,会预先申请一块4k的内存,并且在起始处将pool的结构体和node的结构体放进去,从last开始一直到end都是空闲内存,<last , end >中间的区域就用来存储小块内存。每一次mp_malloc,就将last指针后移,直到end - last < size 时,进行扩容,将新block的last后移即可。

  • 初始状态

  • 分配内存

  • 扩容

大块内存的分配与管理

  对于大块内存,前面已经说了,用户申请的时候,内存池才申请。

  • 申请一块大内存

  • 再申请一块大内存

内存池代码实现

向外提供的api

  • mp_create_pool:创建一个线程池,其核心是创建struct mp_pool_s这个结构体,并申请4k内存,将各个指针指向上文初始状态的图一样
  • mp_destroy_pool:销毁内存池,遍历小块结构体和大块结构体,进行free释放内存
  • mp_malloc:提供给用户申请内存的api
  • mp_calloc:通过mp_malloc申请内存后置零,相当于calloc
  • mp_free:释放由mp_malloc返回的内存
  • mp_reset_pool:将block的last置为初始状态,销毁所有大块内存
  • monitor_mp_poll:监控内存池状态
struct mp_pool_s *mp_create_pool(size_t size);
void mp_destroy_pool(struct mp_pool_s *pool);
void *mp_malloc(struct mp_pool_s *pool, size_t size);
void *mp_calloc(struct mp_pool_s *pool, size_t size);
void mp_free(struct mp_pool_s *pool, void *p);
void mp_reset_pool(struct mp_pool_s *pool);
void monitor_mp_poll(struct mp_pool_s *pool, char *tk);

相关结构体定义

  mp_pool_s 就是整个内存池的管理结构,我们做的内存池是一个连接一个内存池,所以对于整个程序而言,内存池对象是有很多个的。

  可能读者会有疑问,有了head,为什么还有current,是因为如果一个block剩余空间小于size超过一定次数后,将current指向下一个block,这样就加快内存分配效率,减少遍历次数。

//每4k一block结点
struct mp_node_s {
    unsigned char *end;//块的结尾
    unsigned char *last;//使用到哪了
    struct mp_node_s *next;//链表
    int quote;//引用计数
    int failed;//失效次数
};
struct mp_large_s {
    struct mp_large_s *next;//链表
    int size;//alloc的大小
    void *alloc;//大块内存的起始地址
};
struct mp_pool_s {
    struct mp_large_s *large;
    struct mp_node_s *head;
    struct mp_node_s *current;
};

内存对齐

  访问速度是内存对齐的原因之一,另外一个原因是某些平台(arm)不支持未内存对齐的访问

  在4k里面划分内存,那么必然有很多地方是不对齐的,所以这里提供两个内存对齐的函数。那么为什么要内存对齐呢?其一:提高访问速度;其二:某些平台arm不支持未对其的内存访问,会出错。

//对齐的指针,固定写法,不要去研究
//比如当前小块中last指向的位置是17,如果是以4字节对齐的,那么返回的是20
//针对(~(a-1))的理解:假如a是4,则a-1=3,二进制的低两位是11,高位是0..0,再~操作,则编程高位全是1,低两位是00
//n表示当前位置,a表示多少字节对齐,(n+a-1)表示取当前位置向上的一个周期,最终mp_align(n, a)返回向上对齐的最小值
#define mp_align(n, alignment) (((n)+(alignment-1)) & ~(alignment-1))
#define mp_align_ptr(p, alignment) (void *)((((size_t)p)+(alignment-1)) & ~(alignment-1))

创建与销毁内存池

  创建一个线程池,其核心是创建struct mp_pool_s这个结构体,并申请4k内存,将各个指针指向上文初始状态的图一样。

  销毁内存池,遍历小块结构体和大块结构体,进行free释放内存。

//创建内存池
struct mp_pool_s *mp_create_pool(size_t size) {
    struct mp_pool_s *pool;
    if (size < PAGE_SIZE || size % PAGE_SIZE != 0) {
        size = PAGE_SIZE;
    }
    //分配4k以上不用malloc,用posix_memalign,因为malloc容易失败
    /*
        int posix_memalign (void **memptr, size_t alignment, size_t size);
     */
    int ret = posix_memalign((void **) &pool, MP_ALIGNMENT, size); //4K + mp_pool_s
    if (ret) {
        return NULL;
    }
    pool->large = NULL;
    pool->current = pool->head = (unsigned char *) pool + sizeof(struct mp_pool_s);
    pool->head->last = (unsigned char *) pool + sizeof(struct mp_pool_s) + sizeof(struct mp_node_s);
    pool->head->end = (unsigned char *) pool + PAGE_SIZE;
    pool->head->failed = 0;
    return pool;
}
//销毁内存池
void mp_destroy_pool(struct mp_pool_s *pool) {
    struct mp_large_s *large;
    for (large = pool->large; large; large = large->next) {
        if (large->alloc) {
            free(large->alloc);
        }
    }
    struct mp_node_s *cur, *next;
    cur = pool->head->next;
    while (cur) {
        next = cur->next;
        free(cur);
        cur = next;
    }
    free(pool);
}

提供给用户的内存申请api

  申请的内存以size做区分,如果大于4k就分配大块内存,小于4k就去block里面划分。

//分配内存
void *mp_malloc(struct mp_pool_s *pool, size_t size) {
    if (size <= 0) {
        return NULL;
    }
    if (size > PAGE_SIZE - sizeof(struct mp_node_s)) {
        //large
        return mp_malloc_large(pool, size);
    }
    else {
        //small
        unsigned char *mem_addr = NULL;
        struct mp_node_s *cur = NULL;
        cur = pool->current;
        while (cur) {
            mem_addr = mp_align_ptr(cur->last, MP_ALIGNMENT);
            if (cur->end - mem_addr >= size) {
                cur->quote++;//引用+1
                //内存池也需要注意一点,即线程安全问题,我们考虑在last发送变动的时候加上锁
                cur->last = mem_addr + size;
                return mem_addr;
            }
            else {
                cur = cur->next;
            }
        }
        return mp_malloc_block(pool, size);// open new space
    }
}
void *mp_calloc(struct mp_pool_s *pool, size_t size) {
    void *mem_addr = mp_malloc(pool, size);
    if (mem_addr) {
        memset(mem_addr, 0, size);
    }
    return mem_addr;
}

小块内存block扩容

  所有的block都 e n d − l a s t < s i z e end - last < sizeend−last<size 时,进行扩容,将新block的last后移即可。

//new block 4k
//分配一个size出去
void *mp_malloc_block(struct mp_pool_s *pool, size_t size) {
    unsigned char *block;
    int ret = posix_memalign((void **) &block, MP_ALIGNMENT, PAGE_SIZE); //4K
    if (ret) {
        return NULL;
    }
    struct mp_node_s *new_node = (struct mp_node_s *) block;
    new_node->end = block + PAGE_SIZE;
    new_node->next = NULL;
    unsigned char *ret_addr = mp_align_ptr(block + sizeof(struct mp_node_s), MP_ALIGNMENT);
    new_node->last = ret_addr + size;
    new_node->quote++;
    struct mp_node_s *current = pool->current;
    struct mp_node_s *cur = NULL;
    for (cur = current; cur->next; cur = cur->next) {
        if (cur->failed++ > 4) {  //失效次数大于4,我们就不在使用这块block分配内存给用户用
            current = cur->next;
        }
    }
    //now cur = last node
    //尾插法,需要考虑线程安全问题
    cur->next = new_node;
    pool->current = current;
    return ret_addr;
}

分配大块内存

//size>4k
void *mp_malloc_large(struct mp_pool_s *pool, size_t size) {
    unsigned char *big_addr;
    int ret = posix_memalign((void **) &big_addr, MP_ALIGNMENT, size); //size
    if (ret) {
        return NULL;
    }
    struct mp_large_s *large;
    //查找已经释放掉的大块内存并且mp_large_s没释放的,让mp_large_s的alloc指针指向申请的这大块内存
    int n = 0;
    for (large = pool->large; large; large = large->next) {
        if (large->alloc == NULL) {
            large->size = size;
            large->alloc = big_addr;
            return big_addr;
        }
        if (n++ > 3) {
            break;// 为了避免过多的遍历,限制次数
        }
    }
  //申请的大块内存是给调用者用的,但给调用者用之前,需要在小块中分配mp_large_t,保存起来
    large = mp_malloc(pool, sizeof(struct mp_large_s));
    if (large == NULL) {
        free(big_addr);
        return NULL;
    }
    large->size = size;
    large->alloc = big_addr;
  //采用头插法,注意,如果是线程安全的话,这里是需要加锁的
    large->next = pool->large;
    pool->large = large;
    return big_addr;
}

释放内存

  如果是大块内存,找到之后直接释放;如果是小块内存,将引用计数减1,如果引用计数为0则重置last。

//释放内存
void mp_free(struct mp_pool_s *pool, void *p) {
    struct mp_large_s *large;
    for (large = pool->large; large; large = large->next) {//大块
        if (p == large->alloc) {
            free(large->alloc);
            large->size = 0;
            large->alloc = NULL;
            return;
        }
    }
    //小块 引用-1,当引用为0时,将重置last为初始位置,也需要注意,last变动时考虑线程安全问题
    struct mp_node_s *cur = NULL;
    for (cur = pool->head; cur; cur = cur->next) {
//        printf("cur:%p   p:%p   end:%p\n", (unsigned char *) cur, (unsigned char *) p, (unsigned char *) cur->end);
        if ((unsigned char *) cur <= (unsigned char *) p && (unsigned char *) p <= (unsigned char *) cur->end) {
            cur->quote--;
            if (cur->quote == 0) {
                if (cur == pool->head) {
                    pool->head->last = (unsigned char *) pool + sizeof(struct mp_pool_s) + sizeof(struct mp_node_s);
                }
                else {
                    cur->last = (unsigned char *) cur + sizeof(struct mp_node_s);
                }
                cur->failed = 0;
                pool->current = pool->head;
            }
            return;
        }
    }
}

内存池测试

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#define PAGE_SIZE 4096
#define MP_ALIGNMENT 16
//对齐的指针,固定写法,不要去研究
//比如当前小块中last指向的位置是17,如果是以4字节对齐的,那么返回的是20
//针对(~(a-1))的理解:假如a是4,则a-1=3,二进制的低两位是11,高位是0..0,再~操作,则编程高位全是1,低两位是00
//n表示当前位置,a表示多少字节对齐,(n+a-1)表示取当前位置向上的一个周期,最终mp_align(n, a)返回向上对齐的最小值
#define mp_align(n, alignment) (((n)+(alignment-1)) & ~(alignment-1))
#define mp_align_ptr(p, alignment) (void *)((((size_t)p)+(alignment-1)) & ~(alignment-1))
//每4k一block结点
struct mp_node_s {
    unsigned char *end;//块的结尾
    unsigned char *last;//使用到哪了
    struct mp_node_s *next;//链表
    int quote;//引用计数
    int failed;//失效次数
};
struct mp_large_s {
    struct mp_large_s *next;//链表
    int size;//alloc的大小
    void *alloc;//大块内存的起始地址
};
struct mp_pool_s {
    struct mp_large_s *large;
    struct mp_node_s *head;
    struct mp_node_s *current;
};
struct mp_pool_s *mp_create_pool(size_t size);
void mp_destroy_pool(struct mp_pool_s *pool);
void *mp_malloc(struct mp_pool_s *pool, size_t size);
void *mp_calloc(struct mp_pool_s *pool, size_t size);
void mp_free(struct mp_pool_s *pool, void *p);
void mp_reset_pool(struct mp_pool_s *pool);
void monitor_mp_poll(struct mp_pool_s *pool, char *tk);
void mp_reset_pool(struct mp_pool_s *pool) {
    struct mp_node_s *cur;
    struct mp_large_s *large;
    for (large = pool->large; large; large = large->next) {
        if (large->alloc) {
            free(large->alloc);
        }
    }
    pool->large = NULL;
    pool->current = pool->head;
    for (cur = pool->head; cur; cur = cur->next) {
        cur->last = (unsigned char *) cur + sizeof(struct mp_node_s);
        cur->failed = 0;
        cur->quote = 0;
    }
}
//创建内存池
struct mp_pool_s *mp_create_pool(size_t size) {
    struct mp_pool_s *pool;
    if (size < PAGE_SIZE || size % PAGE_SIZE != 0) {
        size = PAGE_SIZE;
    }
    //分配4k以上不用malloc,用posix_memalign,因为malloc容易失败
    /*
        int posix_memalign (void **memptr, size_t alignment, size_t size);
     */
    int ret = posix_memalign((void **) &pool, MP_ALIGNMENT, size); //4K + mp_pool_s
    if (ret) {
        return NULL;
    }
    pool->large = NULL;
    pool->current = pool->head = (unsigned char *) pool + sizeof(struct mp_pool_s);
    pool->head->last = (unsigned char *) pool + sizeof(struct mp_pool_s) + sizeof(struct mp_node_s);
    pool->head->end = (unsigned char *) pool + PAGE_SIZE;
    pool->head->failed = 0;
    return pool;
}
//销毁内存池
void mp_destroy_pool(struct mp_pool_s *pool) {
    struct mp_large_s *large;
    for (large = pool->large; large; large = large->next) {
        if (large->alloc) {
            free(large->alloc);
        }
    }
    struct mp_node_s *cur, *next;
    cur = pool->head->next;
    while (cur) {
        next = cur->next;
        free(cur);
        cur = next;
    }
    free(pool);
}
//size>4k
void *mp_malloc_large(struct mp_pool_s *pool, size_t size) {
    unsigned char *big_addr;
    int ret = posix_memalign((void **) &big_addr, MP_ALIGNMENT, size); //size
    if (ret) {
        return NULL;
    }
    struct mp_large_s *large;
    //查找已经释放掉的大块内存并且mp_large_s没释放的,让mp_large_s的alloc指针指向申请的这大块内存
    int n = 0;
    for (large = pool->large; large; large = large->next) {
        if (large->alloc == NULL) {
            large->size = size;
            large->alloc = big_addr;
            return big_addr;
        }
        if (n++ > 3) {
            break;// 为了避免过多的遍历,限制次数
        }
    }
  //申请的大块内存是给调用者用的,但给调用者用之前,需要在小块中分配mp_large_t,保存起来
    large = mp_malloc(pool, sizeof(struct mp_large_s));
    if (large == NULL) {
        free(big_addr);
        return NULL;
    }
    large->size = size;
    large->alloc = big_addr;
  //采用头插法,注意,如果是线程安全的话,这里是需要加锁的
    large->next = pool->large;
    pool->large = large;
    return big_addr;
}
//new block 4k
//分配一个size出去
void *mp_malloc_block(struct mp_pool_s *pool, size_t size) {
    unsigned char *block;
    int ret = posix_memalign((void **) &block, MP_ALIGNMENT, PAGE_SIZE); //4K
    if (ret) {
        return NULL;
    }
    struct mp_node_s *new_node = (struct mp_node_s *) block;
    new_node->end = block + PAGE_SIZE;
    new_node->next = NULL;
    unsigned char *ret_addr = mp_align_ptr(block + sizeof(struct mp_node_s), MP_ALIGNMENT);
    new_node->last = ret_addr + size;
    new_node->quote++;
    struct mp_node_s *current = pool->current;
    struct mp_node_s *cur = NULL;
    for (cur = current; cur->next; cur = cur->next) {
        if (cur->failed++ > 4) {  //失效次数大于4,我们就不在使用这块block分配内存给用户用
            current = cur->next;
        }
    }
    //now cur = last node
    //尾插法,需要考虑线程安全问题
    cur->next = new_node;
    pool->current = current;
    return ret_addr;
}
//分配内存
void *mp_malloc(struct mp_pool_s *pool, size_t size) {
    if (size <= 0) {
        return NULL;
    }
    if (size > PAGE_SIZE - sizeof(struct mp_node_s)) {
        //large
        return mp_malloc_large(pool, size);
    }
    else {
        //small
        unsigned char *mem_addr = NULL;
        struct mp_node_s *cur = NULL;
        cur = pool->current;
        while (cur) {
            mem_addr = mp_align_ptr(cur->last, MP_ALIGNMENT);
            if (cur->end - mem_addr >= size) {
                cur->quote++;//引用+1
                //内存池也需要注意一点,即线程安全问题,我们考虑在last发送变动的时候加上锁
                cur->last = mem_addr + size;
                return mem_addr;
            }
            else {
                cur = cur->next;
            }
        }
        return mp_malloc_block(pool, size);// open new space
    }
}
void *mp_calloc(struct mp_pool_s *pool, size_t size) {
    void *mem_addr = mp_malloc(pool, size);
    if (mem_addr) {
        memset(mem_addr, 0, size);
    }
    return mem_addr;
}
//释放内存
void mp_free(struct mp_pool_s *pool, void *p) {
    struct mp_large_s *large;
    for (large = pool->large; large; large = large->next) {//大块
        if (p == large->alloc) {
            free(large->alloc);
            large->size = 0;
            large->alloc = NULL;
            return;
        }
    }
    //小块 引用-1,当引用为0时,将重置last为初始位置,也需要注意,last变动时考虑线程安全问题
    struct mp_node_s *cur = NULL;
    for (cur = pool->head; cur; cur = cur->next) {
//        printf("cur:%p   p:%p   end:%p\n", (unsigned char *) cur, (unsigned char *) p, (unsigned char *) cur->end);
        if ((unsigned char *) cur <= (unsigned char *) p && (unsigned char *) p <= (unsigned char *) cur->end) {
            cur->quote--;
            if (cur->quote == 0) {
                if (cur == pool->head) {
                    pool->head->last = (unsigned char *) pool + sizeof(struct mp_pool_s) + sizeof(struct mp_node_s);
                }
                else {
                    cur->last = (unsigned char *) cur + sizeof(struct mp_node_s);
                }
                cur->failed = 0;
                pool->current = pool->head;
            }
            return;
        }
    }
}
void monitor_mp_poll(struct mp_pool_s *pool, char *tk) {
    printf("\r\n\r\n------start monitor poll------%s\r\n\r\n", tk);
    struct mp_node_s *head = NULL;
    int i = 0;
    for (head = pool->head; head; head = head->next) {
        i++;
        if (pool->current == head) {
            printf("current==>第%d块\n", i);
        }
        if (i == 1) {
            printf("第%02d块small block  已使用:%4ld  剩余空间:%4ld  引用:%4d  failed:%4d\n", i,
                   (unsigned char *) head->last - (unsigned char *) pool,
                   head->end - head->last, head->quote, head->failed);
        }
        else {
            printf("第%02d块small block  已使用:%4ld  剩余空间:%4ld  引用:%4d  failed:%4d\n", i,
                   (unsigned char *) head->last - (unsigned char *) head,
                   head->end - head->last, head->quote, head->failed);
        }
    }
    struct mp_large_s *large;
    i = 0;
    for (large = pool->large; large; large = large->next) {
        i++;
        if (large->alloc != NULL) {
            printf("第%d块large block  size=%d\n", i, large->size);
        }
    }
    printf("\r\n\r\n------stop monitor poll------\r\n\r\n");
}
int main() {
    struct mp_pool_s *p = mp_create_pool(PAGE_SIZE);
    monitor_mp_poll(p, "create memory pool");
#if 0
    printf("mp_align(5, %d): %d, mp_align(17, %d): %d\n", MP_ALIGNMENT, mp_align(5, MP_ALIGNMENT), MP_ALIGNMENT,
           mp_align(17, MP_ALIGNMENT));
    printf("mp_align_ptr(p->current, %d): %p, p->current: %p\n", MP_ALIGNMENT, mp_align_ptr(p->current, MP_ALIGNMENT),
           p->current);
#endif
    void *mp[30];
    int i;
    for (i = 0; i < 30; i++) {
        mp[i] = mp_malloc(p, 512);
    }
    monitor_mp_poll(p, "申请512字节30个");
    for (i = 0; i < 30; i++) {
        mp_free(p, mp[i]);
    }
    monitor_mp_poll(p, "销毁512字节30个");
    int j;
    for (i = 0; i < 50; i++) {
        char *pp = mp_calloc(p, 32);
        for (j = 0; j < 32; j++) {
            if (pp[j]) {
                printf("calloc wrong\n");
                exit(-1);
            }
        }
    }
    monitor_mp_poll(p, "申请32字节50个");
    for (i = 0; i < 50; i++) {
        char *pp = mp_malloc(p, 3);
    }
    monitor_mp_poll(p, "申请3字节50个");
    void *pp[10];
    for (i = 0; i < 10; i++) {
        pp[i] = mp_malloc(p, 5120);
    }
    monitor_mp_poll(p, "申请大内存5120字节10个");
    for (i = 0; i < 10; i++) {
        mp_free(p, pp[i]);
    }
    monitor_mp_poll(p, "销毁大内存5120字节10个");
    mp_reset_pool(p);
    monitor_mp_poll(p, "reset pool");
    for (i = 0; i < 100; i++) {
        void *s = mp_malloc(p, 256);
    }
    monitor_mp_poll(p, "申请256字节100个");
    mp_destroy_pool(p);
    return 0;
}

nginx内存池对比分析

相关结构体定义对比

创建内存池对比

内存申请对比

目录
相关文章
|
8月前
3.1.2 内存池的实现与场景分析
3.1.2 内存池的实现与场景分析
|
2月前
|
安全 开发者
内存池的优缺点分别是什么
内存池的优缺点分别是什么
47 1
|
2月前
|
安全 开发者
内存池池有哪些优缺点
内存池池有哪些优缺点
|
2月前
|
算法 安全 C++
如何使用内存池呢
如何使用内存池呢
|
5月前
|
Java 编译器
手写JAVA线程池
该博客文章介绍了如何手写一个简单的Java线程池,包括创建固定线程、提交任务到并发队列、线程从队列中消费任务以及如何停止线程的实现过程。
|
8月前
|
存储 Java Linux
【高并发内存池】第一篇 项目简介及定长内存池
【高并发内存池】第一篇 项目简介及定长内存池
162 0
|
8月前
|
存储 监控 算法
图文结合纯c手写内存池
图文结合纯c手写内存池
93 0
|
8月前
内存池的实现思路
内存池的实现思路
61 0
|
8月前
|
监控 Java 应用服务中间件
纯c手写线程池
纯c手写线程池
74 0
|
8月前
|
存储 索引
池式组件-内存池的原理及其实现
池式组件-内存池的原理及其实现
82 0