基于OFDM的水下图像传输通信系统matlab仿真

简介: 基于OFDM的水下图像传输通信系统matlab仿真

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
基于OFDM的水下图像传输通信系统是一种用于在水下环境中传输图像数据的通信系统。它采用了OFDM(Orthogonal Frequency Division Multiplexing)技术,这种技术在水下通信中具有一些优势,因为它可以克服多径传播和频率选择性衰落等问题。

   基于OFDM的水下图像传输通信系统的原理是利用多个正交子载波来传输数据。这些子载波在频域上正交,因此可以减少多径传播引起的符号间干扰。同时,通过选择合适的子载波间隔,可以克服频率选择性衰落。

结构:

数据源: 通常是水下摄像机或其他图像采集设备,用于捕获水下场景中的图像数据。

数据编码: 图像数据需要经过压缩和编码,以减少传输带宽和提高传输效率。

OFDM调制: 编码后的数据被分成多个子载波,并进行OFDM调制。这通常包括将数据映射到复数星座上,并为每个子载波分配数据。

3ad94637bc6e10ebf5d9a339fd8f71a9_82780907_202311102309320028870444_Expires=1699629572&Signature=PfrxYk1bSlrgnEN0xAXKk1QbvFs%3D&domain=8.png

信道: 数据通过水下信道传输,这是一个具有多径传播和衰落效应的环境。信号在传输过程中可能会受到衰落和失真的影响。
231a4ebbb3dc908ad762d184b302090c_82780907_202311102310170246870849_Expires=1699629617&Signature=%2Fyji9A89KsD41YYubHOHAlexlxs%3D&domain=8.png

OFDM解调: 接收端对接收到的OFDM信号进行解调,将其从频域转换为时域信号。

信道估计和均衡: 通过使用导频或估计信道特性,接收端进行信道估计和均衡,以抵消信号在水下传输中引起的失真。

解码: 解码器对接收到的数据进行解码,将其还原为原始图像数据。

图像重建: 解码后的数据被还原为水下场景的图像。

数据显示: 最终图像可以在显示设备上显示,以供观察和分析。

   其中,信号功率可以通过接收信号的能量来计算,噪声功率可以通过测量背景噪声来估算。以上是基于OFDM的水下图像传输通信系统的基本原理、结构和一些相关公式。这种系统在水下数据传输中具有广泛的应用,包括水下勘探、水下机器人和水下通信等领域。

4.部分核心程序

```function [rx_img] = func_TR(tx_img, num_path, pathdelays, pathgains, snr)
rng('default');
% 将输入的图像展平为一维数组
img1d = reshape(tx_img, 1, 256*256);

% 将一维数组中的数值转换为四进制表示
img_b4 = dec2base(img1d, 4);
% 将四进制表示的数据转换为一维数组
for i=1:length(img_b4)
a = img_b4(i,:);
img_b4d((i-1)4+1:i4) = a(:)-48;
end

% 使用QAM调制将数据进行调制
QAM = 4;
data = qammod(img_b4d, QAM);
NFFT = 64;
CPLEN = NFFT/4;
tsig = func_T_ofdm(data,CPLEN);
% 应用多径信道
%pathdelays = [0, 3, 5, 6, 8];
%pathgains = [0, -2, -5, -8, -20 ];
[tsig_c, h] = func_multipath(tsig, num_path, pathdelays, pathgains);

% 添加高斯噪声
rsig = awgn(tsig_c, snr);
% 使用逆OFDM转换
fsig = func_R_ofdm(rsig, h(1), CPLEN);
img_b4d = qamdemod(fsig, 4);

% 将数据重新转换为图像
pimg = char(img_b4d+48);
for i=1:256256;
a = pimg((i-1)
4+1:i*4);
pimg_q(i,:) = a;
end;

pimg_d = base2dec(pimg_q, 4);
pimg_u8 = cast(pimg_d, 'uint8');
rx_img = reshape(pimg_u8, 256, 256);

end

```

相关文章
|
3天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
4天前
|
算法
超市火灾烟雾蔓延及人员疏散的matlab模拟仿真,带GUI界面
本项目基于MATLAB2022A开发,模拟了大型商业建筑中火灾发生后的人员疏散与烟雾扩散情况。算法通过设定引导点指导人员疏散,考虑视野范围、随机运动及多细胞竞争同一格点的情况。人员疏散时,根据是否处于烟雾区调整运动策略和速度,初始疏散采用正态分布启动。烟雾扩散模型基于流体方程,考虑了无风环境下的简化。
|
4天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
212 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
135 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
96 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
7月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
7月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)