kears搭建lstm实现用电量预测时间序列预测

简介: kears搭建lstm实现用电量预测时间序列预测

付完整代码

结果展示:

完整代码:

# -*- coding: utf-8 -*-
# 导入库pip install openpyxl -i https://pypi.tuna.tsinghua.edu.cn/simple
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.metrics import mean_squared_error  # 评价指标
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM, GRU
from keras import optimizers
import keras
import tensorflow as tf
#  mse rmse mae rmape
#  adam sgd
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
import warnings
warnings.filterwarnings("ignore&
相关文章
|
2月前
|
机器学习/深度学习 自然语言处理 PyTorch
【机器学习】探索LSTM:深度学习领域的强大时间序列处理能力
【机器学习】探索LSTM:深度学习领域的强大时间序列处理能力
|
4月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目采用MATLAB 2022a实现时间序列预测,利用CNN与LSTM结合的优势,并以鲸鱼优化算法(WOA)优化模型超参数。CNN提取时间序列的局部特征,LSTM处理长期依赖关系,而WOA确保参数最优配置以提高预测准确性。完整代码附带中文注释及操作指南,运行效果无水印展示。
|
3月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目展示了一种结合灰狼优化(GWO)与深度学习模型(CNN和LSTM)的时间序列预测方法。GWO算法高效优化模型超参数,提升预测精度。CNN提取局部特征,LSTM处理长序列依赖,共同实现准确的未来数值预测。项目包括MATLAB 2022a环境下运行的完整代码及视频教程,代码内含详细中文注释,便于理解和操作。
|
6月前
|
机器学习/深度学习 算法 数据可视化
基于GA遗传优化的CNN-LSTM的时间序列回归预测matlab仿真
摘要:该内容展示了基于遗传算法优化的CNN-LSTM时间序列预测模型在matlab2022a中的应用。核心程序包括遗传算法优化过程、网络训练、误差分析及预测结果的可视化。模型通过GA调整CNN-LSTM的超参数,提升预测准确性和稳定性。算法流程涉及初始化、评估、选择、交叉和变异等步骤,旨在找到最佳超参数以优化模型性能。
|
5月前
|
机器学习/深度学习 算法
基于PSO粒子群优化的CNN-LSTM的时间序列回归预测matlab仿真
**算法预览图省略** - **软件版本**: MATLAB 2022a - **核心代码片段**略 - **PSO-CNN-LSTM概览**: 结合深度学习与优化,解决复杂时间序列预测。 - **CNN**利用卷积捕获时间序列的空间特征。 - **LSTM**通过门控机制处理长序列依赖,避免梯度问题。 - **流程**: 1. 初始化粒子群,每个粒子对应CNN-LSTM参数。 2. 训练模型,以验证集MSE评估适应度。 3. 使用PSO更新粒子参数,寻找最佳配置。 4. 迭代优化直到满足停止条件,如最大迭代次数或找到优良解。
|
7月前
|
机器学习/深度学习 算法
LSTM时间序列预测中的一个常见错误以及如何修正
在使用LSTM进行时间序列预测时,常见错误是混淆回归和预测问题。LSTM需将时间序列转化为回归问题,通常使用窗口或多步方法。然而,窗口方法中,模型在预测未来值时依赖已知的未来值,导致误差累积。为解决此问题,应采用迭代预测和替换输入值的方法,或者在多步骤方法中选择合适的样本数量和训练大小以保持时间结构。编码器/解码器模型能更好地处理时间数据。
327 1
|
7月前
|
机器学习/深度学习 存储 算法
基于CNN+LSTM深度学习网络的时间序列预测matlab仿真,并对比CNN+GRU网络
该文介绍了使用MATLAB2022A进行时间序列预测的算法,结合CNN和RNN(LSTM或GRU)处理数据。CNN提取局部特征,RNN处理序列依赖。LSTM通过门控机制擅长长序列,GRU则更为简洁、高效。程序展示了训练损失、精度随epoch变化的曲线,并对训练及测试数据进行预测,评估预测误差。
|
7月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM-Attention的时间序列回归预测matlab仿真
摘要: 本文介绍了使用matlab2022a中优化后的算法,应用于时间序列回归预测,结合CNN、LSTM和Attention机制,提升预测性能。GWO算法用于优化深度学习模型的超参数,模拟灰狼社群行为以求全局最优。算法流程包括CNN提取局部特征,LSTM处理序列依赖,注意力机制聚焦相关历史信息。GWO的灰狼角色划分和迭代策略助力寻找最佳解。
|
7月前
|
机器学习/深度学习 算法 数据可视化
基于WOA优化的CNN-LSTM-Attention的时间序列回归预测matlab仿真
该文介绍了使用优化后的深度学习模型(基于CNN、LSTM和Attention机制)进行时间序列预测,对比了优化前后的效果,显示了性能提升。算法在MATLAB2022a中实现,利用WOA(鲸鱼优化算法)调整模型超参数。模型通过CNN提取局部特征,LSTM处理序列依赖,Attention机制关注相关历史信息。核心程序展示了WOA如何迭代优化及预测过程,包括数据归一化、网络结构分析和预测误差可视化。
|
7月前
|
机器学习/深度学习 数据可视化 TensorFlow
【视频】LSTM模型原理及其进行股票收盘价的时间序列预测讲解|附数据代码1
【视频】LSTM模型原理及其进行股票收盘价的时间序列预测讲解|附数据代码

热门文章

最新文章