【Python】数据分析:numpy的常用方法

简介: 【Python】数据分析:numpy的常用方法

1 - 基本语法01

array.astype(int/float):将数组里面数据设置为()里面的类型

np.eye(n):创建一个n维的单位数组

np.ones(n,m):创建一个n×m的数值为1的数组

np.zeros(n,m):创建一个n×m的数值为0的零数组

np.argmax(arr,axis=n):arr数组n轴上最大值的索引值

np.argmin(arr,axis=n):arr数组n轴上最小值的索引值

arr[arr==n] = m:arr数组数值为n的数赋值为m

import numpy as np
# 3行4列的零矩阵数组
t1 = np.zeros((3,4))
print(t1)
# 3行4列的1矩阵数组
t2 = np.ones((3,4))
print(t2)
# 秩为4的单位矩阵
t3 = np.eye(4)
print(t3)
# 指定轴最大值的索引
print(np.argmax(t3,axis=0))
# 反方向赋值
t3[t3==1]=-1
print(t3)
# 指定轴最小值的索引
print(np.argmin(t3,axis=0))

0S`%$QEU@($NIGQET4)UUP6.png

result01.png

2 - 关于分布的基础语法

np.random.rand(n,m):n行m列的0-1的随机数数组

np.random.randint(n,m,(size):形状为size的low=n,high=m的随机数组

np.random.randn(size)`***:形状为size的正态分布的随机数组 ***`np.random.normal(n,m,(size))`***:形状为size的均值为n,标准差为m的随机数组 ***`np.random.uniform(low,high,(size))`***:形状为size的min=low,max=high的服从均匀分布随机数组 ***:

8H5E[{@4MEAD[JR3_MWCEMM.png

随机分布 random distribution.png


GH9XC{[[[UF`)8RM3U[TVOS.png

正态分布normal distribution.png

import numpy as np
# 随机分布
t1 = np.random.rand(2,3)
print(t1)
# min为2,max为6的2行4列的整数数组
t2 = np.random.randint(2,6,(2,4))
print(t2)
# 2行5列的值服从标准正态分布的数组
t3 = np.random.randn(2,5)
print(t3)
# 2行4列的值服从均匀分布的数组
t4 = np.random.uniform(2,4,(2,4))
print(t4)
# 2行4列的值服从均值为2,标准差为6正态分布的数组
t5 = np.random.normal(2,6,(2,4))
print(t5)
# 随机种子
np.random.seed(10)
t6 = np.random.randint(2,10,(2,6))
print(t6)

PE`H21N9KM4HQJXA]8(($2T.png

result02.png

3-numpy中的view和copy

6GVJDFPTHCWQU)~TH`4QXAC.png

目录
相关文章
|
4天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
18 0
|
4天前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
14 3
|
6天前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
25 5
|
5天前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
14 2
|
5天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
17 1
|
10天前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
18 2
|
10天前
|
数据采集 机器学习/深度学习 数据可视化
深入浅出:用Python进行数据分析的入门指南
【10月更文挑战第21天】 在信息爆炸的时代,掌握数据分析技能就像拥有一把钥匙,能够解锁隐藏在庞大数据集背后的秘密。本文将引导你通过Python语言,学习如何从零开始进行数据分析。我们将一起探索数据的收集、处理、分析和可视化等步骤,并最终学会如何利用数据讲故事。无论你是编程新手还是希望提升数据分析能力的专业人士,这篇文章都将为你提供一条清晰的学习路径。
|
19天前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据处理与可视化——以气温数据分析为例
【10月更文挑战第12天】使用Python进行数据处理与可视化——以气温数据分析为例
137 0
|
19天前
|
数据挖掘 索引 Python
Python数据分析篇--NumPy--进阶
Python数据分析篇--NumPy--进阶
14 0
|
3月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
71 2

热门文章

最新文章