【Python】数据分析:numpy的常用方法

简介: 【Python】数据分析:numpy的常用方法

1 - 基本语法01

array.astype(int/float):将数组里面数据设置为()里面的类型

np.eye(n):创建一个n维的单位数组

np.ones(n,m):创建一个n×m的数值为1的数组

np.zeros(n,m):创建一个n×m的数值为0的零数组

np.argmax(arr,axis=n):arr数组n轴上最大值的索引值

np.argmin(arr,axis=n):arr数组n轴上最小值的索引值

arr[arr==n] = m:arr数组数值为n的数赋值为m

import numpy as np
# 3行4列的零矩阵数组
t1 = np.zeros((3,4))
print(t1)
# 3行4列的1矩阵数组
t2 = np.ones((3,4))
print(t2)
# 秩为4的单位矩阵
t3 = np.eye(4)
print(t3)
# 指定轴最大值的索引
print(np.argmax(t3,axis=0))
# 反方向赋值
t3[t3==1]=-1
print(t3)
# 指定轴最小值的索引
print(np.argmin(t3,axis=0))

0S`%$QEU@($NIGQET4)UUP6.png

result01.png

2 - 关于分布的基础语法

np.random.rand(n,m):n行m列的0-1的随机数数组

np.random.randint(n,m,(size):形状为size的low=n,high=m的随机数组

np.random.randn(size)`***:形状为size的正态分布的随机数组 ***`np.random.normal(n,m,(size))`***:形状为size的均值为n,标准差为m的随机数组 ***`np.random.uniform(low,high,(size))`***:形状为size的min=low,max=high的服从均匀分布随机数组 ***:

8H5E[{@4MEAD[JR3_MWCEMM.png

随机分布 random distribution.png


GH9XC{[[[UF`)8RM3U[TVOS.png

正态分布normal distribution.png

import numpy as np
# 随机分布
t1 = np.random.rand(2,3)
print(t1)
# min为2,max为6的2行4列的整数数组
t2 = np.random.randint(2,6,(2,4))
print(t2)
# 2行5列的值服从标准正态分布的数组
t3 = np.random.randn(2,5)
print(t3)
# 2行4列的值服从均匀分布的数组
t4 = np.random.uniform(2,4,(2,4))
print(t4)
# 2行4列的值服从均值为2,标准差为6正态分布的数组
t5 = np.random.normal(2,6,(2,4))
print(t5)
# 随机种子
np.random.seed(10)
t6 = np.random.randint(2,10,(2,6))
print(t6)

PE`H21N9KM4HQJXA]8(($2T.png

result02.png

3-numpy中的view和copy

6GVJDFPTHCWQU)~TH`4QXAC.png

目录
相关文章
|
11天前
|
JSON 数据可视化 API
Python 中调用 DeepSeek-R1 API的方法介绍,图文教程
本教程详细介绍了如何使用 Python 调用 DeepSeek 的 R1 大模型 API,适合编程新手。首先登录 DeepSeek 控制台获取 API Key,安装 Python 和 requests 库后,编写基础调用代码并运行。文末包含常见问题解答和更简单的可视化调用方法,建议收藏备用。 原文链接:[如何使用 Python 调用 DeepSeek-R1 API?](https://apifox.com/apiskills/how-to-call-the-deepseek-r1-api-using-python/)
|
3月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
165 3
|
28天前
|
人工智能 自然语言处理 算法
随机的暴力美学蒙特卡洛方法 | python小知识
蒙特卡洛方法是一种基于随机采样的计算算法,广泛应用于物理学、金融、工程等领域。它通过重复随机采样来解决复杂问题,尤其适用于难以用解析方法求解的情况。该方法起源于二战期间的曼哈顿计划,由斯坦尼斯拉夫·乌拉姆等人提出。核心思想是通过大量随机样本来近似真实结果,如估算π值的经典示例。蒙特卡洛树搜索(MCTS)是其高级应用,常用于游戏AI和决策优化。Python中可通过简单代码实现蒙特卡洛方法,展示其在文本生成等领域的潜力。随着计算能力提升,蒙特卡洛方法的应用范围不断扩大,成为处理不确定性和复杂系统的重要工具。
69 21
|
26天前
|
数据挖掘 数据处理 开发者
Python3 自定义排序详解:方法与示例
Python的排序功能强大且灵活,主要通过`sorted()`函数和列表的`sort()`方法实现。两者均支持`key`参数自定义排序规则。本文详细介绍了基础排序、按字符串长度或元组元素排序、降序排序、多条件排序及使用`lambda`表达式和`functools.cmp_to_key`进行复杂排序。通过示例展示了如何对简单数据类型、字典、类对象及复杂数据结构(如列车信息)进行排序。掌握这些技巧可以显著提升数据处理能力,为编程提供更强大的支持。
32 10
|
1月前
|
数据采集 SQL 数据挖掘
电商数据分析的方法
电商数据分析涵盖从业务需求理解到数据呈现的全流程。初学者应循序渐进,掌握数据清洗、转换等技能,Python是重要工具。社交媒体营销分析关注用户参与度和KOL影响。实战教程如《2019电商数据分析师实战项目》提供Excel、SQL及Tableau应用案例,帮助巩固理论知识。代码示例展示了如何使用Pandas和SQLAlchemy进行销售数据分析,计算转化率。 (注:联系方式和感谢语已省略以符合要求)
电商数据分析的方法
|
3月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
198 4
数据分析的 10 个最佳 Python 库
|
2月前
|
安全
Python-打印99乘法表的两种方法
本文详细介绍了两种实现99乘法表的方法:使用`while`循环和`for`循环。每种方法都包括了步骤解析、代码演示及优缺点分析。文章旨在帮助编程初学者理解和掌握循环结构的应用,内容通俗易懂,适合编程新手阅读。博主表示欢迎读者反馈,共同进步。
|
2月前
|
JSON 安全 API
Python调用API接口的方法
Python调用API接口的方法
410 5
|
2月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
2月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。

热门文章

最新文章

推荐镜像

更多