计算机发展前沿技术1——医学领域的人工智能

简介: 随着科技发展,人工智能技术在教育领域中的应用已取得较大进展。近年来,人工智能(AI)技术和由其引发的大数据时代自社会的各个层面包括我们的思维、生活方式和工作模式产生了巨大的变革;其与医学的结合给医疗系统带来深远的影响。从互联网到云计算,再到由大数据集合而成的人工智能,不断更新的处理手段使医疗行业也开始尝试新的转变,从传统的人工诊疗、教学模式逐步转变为依据机器学习来获取更高效的信息,并在医学多个领域已有比较广泛的应用。本文将从人工智能在医学领域的优势、当前的进展、应用、局限性和未来方向来进行综述。

1、人工智能在医学领域的优势[1]
人工智能是一门新兴的技术学科,可以对现有的理论、方法和技术进行整合并能进一步开发新的系统,进行相关的科学研究;自人工智能产生以来,其理论和技术日益成熟,应用领域也在不断扩大。总的来说,AI是一种新的、能以与人类职能相似的方式做出反应的智能机器,包括机器人、图像和语言识别、处理自然语言等;通过了解AI的实质,能够让我们更好的应用这门技术。由此来看,AI所执行的主要任务就是要使其能够胜任一部分通常需要人类才能完成的复杂工作。AI通过不断的完善和发展改变了人们的工作和生活方式,也促使医疗行业工作者对其价值进行了思考和探索。从现有的成果可以预见,AI功能的扩展和创新,将为临床医生以及科研人员开辟全新的领域,为基因组学探索、医药研发以及疾病诊断提供新的思路和途径。

    自20世纪开始,我们开始致力于开发出机器学习方法,期待解决一些人工无法解决的问题,这便是最初的人工智能技术来源。目前研发的人工智能系统,已经可以处理大量的数据和知识如计算方法、混合智能系统等。

    然而,人工智能不仅涉及一门技术或是一门学科,而是多种学科技术的融合。通过人工智能系统,我们可以查找、学习、设定计划;另一方面,我们还可以通过人工智能系统模拟出具体的智能行为,也包括各类医学科研研究过程。这项技术打破了限制医疗行业发展的障碍,即如何有效的探索和分析一些需要应用大量知识来解决的复杂性诊疗问题。现在,医学AI通过发展和完善使这些问题能被很好的解决,并且为我们提供了精准的治疗方案。

    医疗是医生围绕患者的生命状态和病情进展形成思辨,并进行干涉性操作和观察性总结的过程。然而在临床上仅凭医疗工作者的能力完成一系列诊治过程和步骤并不现实。随着新兴的技术日趋增多,人工智能在医学领域中的应用越来越广泛,包括大数据技术,主要通过在数据中制定一系列规则,从而对数据进行有效分类,再与临床医生的医嘱相结合,充分体现了具有可靠性和精确性的智能诊疗模式。在这一智能系统的辅助下,医疗工作人员可检查系统举出的病症和推论是否合理,然后将更多的信息加入,对大量的医疗数据进行整理总结,得出最佳治疗建议。这种新型的方式可以更好的处理信息,辅助医生进行诊疗。

    对于获得的大量信息,人工智能系统可通过“深度学习”将其进行分类和归纳,还可进行直接提取和输出,减少了不必要的人工劳动。另外人工智能在医学中的应用还涉及药物挖掘、健康管理、疾病风险预测等,通过人工智能将各学科和各平台系统进行有机结合使医疗行业得到了更快的发展,这一发展体现在三个层面:对于临床医生而言,能够通过便捷的手段对患者的病情进行准确的解释和判断;通过简化工作流程和减少医疗失误的潜力来改善医疗系统;对于患者而言,智能系统使他们能安心其处理自身的健康数据,更好的促进人类健康。

    人工智能在医学领域的应用具有广阔的前景,包括机器学习与深度学习、知识图谱、自然语言处理、生物识别等。但在前期,由于系统性不完善、参与人员不足,造成相关研究往往只能取其中一个非常具体的层面切入,主要是限于背景、实力等因素,无法做到面面俱到,造成人工智能出现缓慢发展的状态。而在后期,计算机编写的程序是主要根据专家的设计原理和方法来模拟医生的思维过程来进行诊断的。其中医疗专家系统就是人工智能的体现,对于医生个人技术及水平问题导致的误诊、漏诊等情况,可以通过人工智能来弥补,经验不足的医师也能从人工智能系统中得到学习和提高。由此来看,人工智能是医生诊断疾病的理想工具,能够辅助医生处理较为复杂的医疗问题,获得更好的治疗效果。

    目前对于各种疾病的诊疗及手术均已形成规范和指南,但毕竟诊疗过程由人来完成,这导致不同医生之间的方法、水平存在较大差异,使用人工智能设定这一标准可大大提高操作的精确性和标准化程度。在临床中各类患者的情况并不相同,因此个体化的医疗设计方案可以提高医疗质量,即在证据充分的基础上,根据患者情况选择最适合的治疗方法,这种智能医疗方案能够给患者带来更好的诊疗体验。此外,我国人口众多,各级医院每年诊治数目庞大的患者,积累了世界上最多的临床医疗数据,针对我们的医疗数据分散、不标准、非结构化的缺陷,采用了医院标准化电子病历,建立安全有效的互联网数据库,将人工智能系统的价值充分的发挥出来。另外,现有的和即将产生的医学知识可能会逐渐超出人类思维的组织能力,但医学教育可以充分利用这一技术不断进行信息的获取和传递,有利于教育信息的不间断传播。
相关文章
|
20天前
|
机器学习/深度学习 人工智能 算法
人工智能平台年度技术趋势
阿里云智能集团研究员林伟在年度技术趋势演讲中,分享了AI平台的五大方面进展。首先,他介绍了大规模语言模型(LLM)训练中的挑战与解决方案,包括高效故障诊断和快速恢复机制。其次,探讨了AI应用和服务的普及化,强调通过优化调度降低成本,使AI真正惠及大众。第三,提出了GreenAI理念,旨在提高AI工程效率,减少能源消耗。第四,讨论了企业级能力,确保数据和模型的安全性,并推出硬件到软件的全面安全方案。最后,介绍了整合多项核心技术的Pai Prime框架,展示了阿里云在自主可控AI核心框架下的整体布局和发展方向。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解人工智能中的深度学习技术及其最新进展
深入理解人工智能中的深度学习技术及其最新进展
281 33
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解人工智能中的深度学习技术及其最新进展
深入理解人工智能中的深度学习技术及其最新进展
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与深度学习:探索未来技术的无限可能
在21世纪,人工智能(AI)和深度学习已经成为推动科技进步的重要力量。本文将深入探讨这两种技术的基本概念、发展历程以及它们如何共同塑造未来的科技景观。我们将分析人工智能的最新趋势,包括自然语言处理、计算机视觉和强化学习,并讨论这些技术在现实世界中的应用。此外,我们还将探讨深度学习的工作原理,包括神经网络、卷积神经网络(CNN)和循环神经网络(RNN),并分析这些模型如何帮助解决复杂的问题。通过本文,读者将对人工智能和深度学习有更深入的了解,并能够预见这些技术将如何继续影响我们的世界。
72 7
|
2月前
|
人工智能 自然语言处理 自动驾驶
技术与人性:探索人工智能伦理的边界####
本文深入探讨了人工智能技术飞速发展背景下,伴随而来的伦理挑战与社会责任。不同于传统摘要直接概述内容,本文摘要旨在引发读者对AI伦理问题的关注,通过提出而非解答的方式,激发对文章主题的兴趣。在智能机器逐渐融入人类生活的每一个角落时,我们如何确保技术的善意使用,保护个人隐私,避免偏见与歧视,成为亟待解决的关键议题。 ####
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度探索人工智能中的自然语言处理技术#### 一、
【10月更文挑战第28天】 本文旨在深入剖析人工智能领域中的自然语言处理(NLP)技术,探讨其发展历程、核心算法、应用现状及未来趋势。通过详尽的技术解读与实例分析,揭示NLP在智能交互、信息检索、内容理解等方面的变革性作用,为读者提供一幅NLP技术的全景图。 #### 二、
139 1
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入探讨人工智能中的深度学习技术##
在本文中,我们将深入探讨深度学习技术的原理、应用以及未来的发展趋势。通过分析神经网络的基本结构和工作原理,揭示深度学习如何在图像识别、自然语言处理等领域取得突破性进展。同时,我们还将讨论当前面临的挑战和未来的研究方向,为读者提供全面的技术洞察。 ##
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与未来医疗:AI技术在疾病诊断中的应用前景####
本文探讨了人工智能(AI)在现代医疗领域,尤其是疾病诊断方面的应用潜力和前景。随着技术的不断进步,AI正逐渐改变传统医疗模式,提高诊断的准确性和效率。通过分析当前的技术趋势、具体案例以及面临的挑战,本文旨在为读者提供一个全面的视角,理解AI如何塑造未来医疗的面貌。 ####
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能的无限可能:技术前沿与应用实践
【10月更文挑战第23天】探索人工智能的无限可能:技术前沿与应用实践
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能:从基础到应用的技术之旅
【10月更文挑战第23天】探索人工智能:从基础到应用的技术之旅