Python最差实践-2

简介: Python最差实践-2

文件操作

文件操作不要使用裸奔的f = open(‘filename’)了,使用with open(‘filename’) as f来让context manager帮你处理异常情况下的关闭文件等乱七八糟的事情多好。  


野蛮使用class.name判断类型


我曾经遇见过一个bug:为了实现某特定功能,我新写了一个class B(A),在B中重写了A的若干函数。整个实现很简单,但是就是有一部分A的功能无法生效。最后追查到的原因,就是在一些逻辑代码中,硬性的判断了entity.__class__.__name__ == ‘A’。  


除非你就是想限定死继承层级中的当前类型(也就是,屏蔽未来可能会出现的子类),否则,不要使用__class__.__name__,而改用isinstance这个内建函数。毕竟,Python把这两个变量的名字都刻意带上那么多下划线,本来就是不太想让你用嘛。  

循环内部有多层函数调用


循环内部有多层函数调用,有如下两方面的隐患:  


Python没有inline函数,所以函数调用本来就会导致一定的开销,尤其是本身逻辑简单的时候,这个开销所占的比例就会挺可观的。


更严重的是,在之后维护这份代码时,会容易让人忽略掉函数是在循环中被调用的,所以容易在函数内部添加了一些开销较大却不必每次循环都调用的函数,比如time.localtime()。如果是直接一个平铺直叙的循环,我想大部分的程序员都应该知道把time.localtime()写到循环的外面,但是引入多层的函数调用之后,就不一定了哦。


所以我建议,在循环内部,如非特别复杂的逻辑,都应该直接写在循环里,不要进行函数调用。如果一定要包装一层函数调用,应该在函数的命名或注释中,提示后续的维护者,这个函数会在循环内部使用。  


Python是一门非常容易入门的语言,严格的缩进要求和丰富的内置数据类型,使得大部分Python代码都能做到比较好的规范。但是,不严格要求自己,也很容易就写出犯二的代码。上面列出的只是很小的一部分,唯有多读、多写、多想,才能培养敏锐的代码嗅觉,第一时间发现坏味道啊。  

相关文章
|
30天前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
53 4
|
26天前
|
存储 程序员 开发者
Python编程基础:从入门到实践
【10月更文挑战第8天】在本文中,我们将一起探索Python编程的奇妙世界。无论你是初学者还是有一定经验的开发者,这篇文章都将为你提供有价值的信息。我们将从Python的基本概念开始,然后逐步深入到更复杂的主题,如数据结构、函数和类。最后,我们将通过一些实际的代码示例来巩固我们的知识。让我们一起开始这段Python编程之旅吧!
|
1月前
|
缓存 开发者 Python
探索Python中的装饰器:从入门到实践
【9月更文挑战第36天】装饰器,在Python中是一种特殊的语法糖,它允许你在不修改原有函数代码的情况下,增加额外的功能。本文将通过浅显易懂的语言和实际代码示例,带你了解装饰器的基本原理,探索其背后的魔法,并展示如何在实际项目中运用这一强大工具。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往更高效、更优雅代码的大门。
56 11
|
2天前
|
Python
探索Python装饰器:从入门到实践
【10月更文挑战第32天】在编程世界中,装饰器是一种特殊的函数,它允许我们在不改变原有函数代码的情况下,增加额外的功能。本文将通过简单易懂的语言和实际案例,带你了解Python中装饰器的基础知识、应用以及如何自定义装饰器,让你的代码更加灵活和强大。
9 2
|
2天前
|
监控 Python
探索Python中的装饰器:从入门到实践
【10月更文挑战第31天】在Python的世界里,装饰器是那些隐藏在幕后的魔法师,它们拥有着改变函数行为的能力。本文将带你走进装饰器的世界,从基础概念到实际应用,一步步揭开它的神秘面纱。你将学会如何用几行代码增强你的函数功能,以及如何避免常见的陷阱。让我们一起来发现装饰器的魔力吧!
|
2天前
|
开发框架 开发者 Python
探索Python中的装饰器:技术感悟与实践
【10月更文挑战第31天】 在编程世界中,装饰器是Python中一种强大的工具,它允许我们在不修改函数代码的情况下增强函数的功能。本文将通过浅显易懂的方式,带你了解装饰器的概念、实现原理及其在实际开发中的应用。我们将一起探索如何利用装饰器简化代码、提高可读性和复用性,同时也会分享一些个人的技术感悟,帮助你更好地掌握这项技术。
11 2
|
5天前
|
数据管理 程序员 数据处理
利用Python自动化办公:从基础到实践####
本文深入探讨了如何运用Python脚本实现办公自动化,通过具体案例展示了从数据处理、文件管理到邮件发送等常见办公任务的自动化流程。旨在为非程序员提供一份简明扼要的实践指南,帮助他们理解并应用Python在提高工作效率方面的潜力。 ####
|
5天前
|
数据采集 存储 XML
Python实现网络爬虫自动化:从基础到实践
本文将介绍如何使用Python编写网络爬虫,从最基础的请求与解析,到自动化爬取并处理复杂数据。我们将通过实例展示如何抓取网页内容、解析数据、处理图片文件等常用爬虫任务。
|
13天前
|
数据可视化 数据挖掘 Python
使用Python进行数据可视化:探索与实践
【10月更文挑战第21天】本文旨在通过Python编程,介绍如何利用数据可视化技术来揭示数据背后的信息和趋势。我们将从基础的图表创建开始,逐步深入到高级可视化技巧,包括交互式图表和动态展示。文章将引导读者理解不同图表类型适用的场景,并教授如何使用流行的库如Matplotlib和Seaborn来制作美观且具有洞察力的可视化作品。
39 7
|
10天前
|
测试技术 开发者 Python
探索Python中的装饰器:从入门到实践
【10月更文挑战第24天】 在Python的世界里,装饰器是一个既神秘又强大的工具。它们就像是程序的“隐形斗篷”,能在不改变原有代码结构的情况下,增加新的功能。本篇文章将带你走进装饰器的世界,从基础概念出发,通过实际例子,逐步深入到装饰器的高级应用,让你的代码更加优雅和高效。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往高效编程的大门。