人工智能原理概述 - ChatGPT 背后的故事2

简介: 三、深度学习3.1 神经网络3.2 CNN

三、深度学习
关于 AI 算法是否要使用类人脑的运作方式去实现,早期是存在较大争议的。并且在深度学习出来之前,大部分的计算机科学家都投身到了,类似于模式匹配的研究方向。现在看来那种方法,当然是很难让机器变的和人一样智能。但我们不能以现在的眼光来看待当时的人们,当时关于数据和算力都很匮乏,所以自然就有一套理论反驳采用类人脑的思路去实现。
计算机的运行原理怎么可能和人脑一样呢?我们还是要采用传统算法去解决问题。这也间接导致了 AI 在当时一直停滞不前的局面。对于当年研究这个方向的博士来说,现实是残酷的。所以才有那句话:人的努力固然重要,但也要看方向。
1943 年神经科学家探究了人脑的运行原理,人的大脑是超过 100 亿个神经元通过网状链接,来判断和传递信息。
image.png
每一个神经元都是一个多输入,单输出。可以通过多个神经元得到信号,得到信号进行综合处理,如果有必要则会向下游输出信号。这个输出只有两个信号,要么就是0要么就是1,和计算机非常类似。所以他们就提出一个模型叫M-P模型。
人工神经网络是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。深度学习是一种以人工神经网络为架构,对资料进行表征学习的算法。

image.png
3.1 神经网络
如下图所示,一个圆就是神经元,而这些圆组成的就是神经网络。给神经网络足够多的数据,告诉神经网络做得好还是不好,不断训练神经网络,它就可以做的越来越好,完成识别图像这样的复杂任务。image.png
其实神经元的计算就是一堆加法和乘法,只是因为它足够的多,所以就变得非常复杂。一个神经元可能有多个输入,只会有一个输出,但可以激活多个神经元。比如下图就是其中一个 Sigmoid 激活函数,可以发现它的值域为(0,1)。image.png

相关文章
|
3月前
|
人工智能
要求CHATGPT高质量回答的艺术:提示工程技术的完整指南—第 27 章:如何避开和绕过所有人工智能内容检测器
要求CHATGPT高质量回答的艺术:提示工程技术的完整指南—第 27 章:如何避开和绕过所有人工智能内容检测器
43 3
|
2月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法与应用
探索人工智能中的强化学习:原理、算法与应用
|
2月前
|
人工智能 自然语言处理 自动驾驶
深入理解ChatGPT:下一代人工智能助手的开发与应用
【10月更文挑战第27天】本文深入探讨了ChatGPT的技术原理、开发技巧和应用场景,展示了其在语言理解和生成方面的强大能力。文章介绍了基于Transformer的架构、预训练与微调技术,以及如何定制化开发、确保安全性和支持多语言。通过实用工具如GPT-3 API和Fine-tuning as a Service,开发者可以轻松集成ChatGPT。未来,ChatGPT有望在智能家居、自动驾驶等领域发挥更大作用,推动人工智能技术的发展。
|
2月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法及应用
探索人工智能中的强化学习:原理、算法及应用
|
3月前
|
机器学习/深度学习 算法 数据建模
计算机前沿技术-人工智能算法-生成对抗网络-算法原理及应用实践
计算机前沿技术-人工智能算法-生成对抗网络-算法原理及应用实践
51 0
|
3月前
|
机器学习/深度学习 人工智能 算法
人工智能-大语言模型-微调技术-LoRA及背后原理简介
人工智能-大语言模型-微调技术-LoRA及背后原理简介
79 0
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能:从原理到实践
【10月更文挑战第6天】在这篇文章中,我们将深入探讨人工智能的基本原理,并展示如何将这些理论应用到实际编程中。无论你是AI新手还是有经验的开发者,这篇文章都将为你提供有价值的信息和启示。我们将从基础概念开始,逐步深入到复杂的编程示例,最后总结出一些关于人工智能未来发展的思考。让我们一起踏上这段探索之旅吧!
|
4月前
|
人工智能 自然语言处理 前端开发
基于ChatGPT开发人工智能服务平台
### 简介 ChatGPT 初期作为问答机器人,现已拓展出多种功能,如模拟面试及智能客服等。模拟面试功能涵盖个性化问题生成、实时反馈等;智能客服则提供全天候支持、多渠道服务等功能。借助人工智能技术,这些应用能显著提升面试准备效果及客户服务效率。 ### 智能平台的使用价值 通过自动化流程,帮助用户提升面试准备效果及提高客户服务效率。 ### 实现思路 1. **需求功能设计**:提问与接收回复。 2. **技术架构设计**:搭建整体框架。 3. **技术选型**:示例采用 `Flask + Template + HTML/CSS`。 4. **技术实现**:前端界面与后端服务实现。
|
3月前
|
自然语言处理
从原理上总结chatGPT的Prompt的方法
从原理上总结chatGPT的Prompt的方法
68 0
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【AI大模型】ChatGPT模型原理介绍(下)
【AI大模型】ChatGPT模型原理介绍(下)