“阿里味”GitHub新春上新NO.1软件架构设计与业务架构融合手册

简介: 软件架构设计的本质,是对问题域空间反复运用演绎、抽象、归纳等方法,进而找到适合当前阶段的设计方案的过程。既要考虑软件随业务发展的纵横向扩展性,也要考虑软件自身的可行性、稳定性和可维护性等技术因素。

软件架构设计的本质,是对问题域空间反复运用演绎、抽象、归纳等方法,进而找到适合当前阶段的设计方案的过程。既要考虑软件随业务发展的纵横向扩展性,也要考虑软件自身的可行性、稳定性和可维护性等技术因素。

而今天阿嘴分享的这份“软件架构设计大型网站技术架构与业务架构融合之道”结合了自身多年架构设计实践经验和多个业界经典案例,帮助诸位理解、总结了许多实用的软件架构设计思路,以及软件设计过程中经常遇到的“道、术、虚、实”。

不同于一些白皮书、技术规范或国外大神的译作,本书从技术出发,所述内容精而不杂,从技术功底到业务场景分析,特别是处处结合作者自身感悟,向广大读者展示了如何建立一种成体系的思维方式和学习方法,让方法论不再晦涩难懂。无论工作三五年的程序员,还是工作八九年的老手,看这本书都会有收获,有共鸣。

总目录

具体来说,全书分为5大部分:

第1部分:

从行业背景出发,对架构做一个宏观概述。让读者知道,当我们说架构的时候,都在说什么。


第2部分:

计算机功底。功底非常重要,这是做架构的基本门槛。大学的教科书上教的全是功底,但经过多年实践之后,再回过头看书本内容,体会完全不一样。


第3部分:

技术架构。这部分是纯技术,讲如何应对高并发、高可用、一致性方面的问题。

第4部分:

业务架构。在这部分,我们将看到如何从技术延展到业务,如何跳出技术细节去抽象思考问题,如何通过业务建模把技术和业务进行融合。

第5部分:

从职业发展的角度,从技术延展到管理。建立起对公司、商业、团队管理的一些基本认知。

对于刚入行的新人来说,建议从头看到尾,从而对架构的能力体系有一个全面认知;对于有经验的从业者,可以选取自己感兴趣的章节翻看。阿嘴也不想再废话了,需要获取学习的朋友,可以点击此处来获取就可以了!

相关文章
|
3月前
|
数据采集 运维 数据可视化
AR 运维系统与 MES、EMA、IoT 系统的融合架构与实践
AR运维系统融合IoT、EMA、MES数据,构建“感知-分析-决策-执行”闭环。通过AR终端实现设备数据可视化,实时呈现温度、工单等信息,提升运维效率与生产可靠性。(238字)
|
3月前
|
JSON 供应链 监控
1688商品详情API技术深度解析:从接口架构到数据融合实战
1688商品详情API(item_get接口)可通过商品ID获取标题、价格、库存、SKU等核心数据,适用于价格监控、供应链管理等场景。支持JSON格式返回,需企业认证。Python示例展示如何调用接口获取商品信息。
|
3月前
|
存储 人工智能 关系型数据库
阿里云AnalyticDB for PostgreSQL 入选VLDB 2025:统一架构破局HTAP,Beam+Laser引擎赋能Data+AI融合新范式
在数据驱动与人工智能深度融合的时代,企业对数据仓库的需求早已超越“查得快”这一基础能力。面对传统数仓挑战,阿里云瑶池数据库AnalyticDB for PostgreSQL(简称ADB-PG)创新性地构建了统一架构下的Shared-Nothing与Shared-Storage双模融合体系,并自主研发Beam混合存储引擎与Laser向量化执行引擎,全面解决HTAP场景下性能、弹性、成本与实时性的矛盾。 近日,相关研究成果发表于在英国伦敦召开的数据库领域顶级会议 VLDB 2025,标志着中国自研云数仓技术再次登上国际舞台。
394 0
|
4月前
|
人工智能 自然语言处理 JavaScript
Github又一AI黑科技项目,打造全栈架构,只需一个统一框架?
Motia 是一款现代化后端框架,融合 API 接口、后台任务、事件系统与 AI Agent,支持 JavaScript、TypeScript、Python 多语言协同开发。它提供可视化 Workbench、自动观测追踪、零配置部署等功能,帮助开发者高效构建事件驱动的工作流,显著降低部署与运维成本,提升 AI 项目落地效率。
409 0
|
4月前
|
机器学习/深度学习 人工智能 Java
Java 技术支撑下 AI 与 ML 技术融合的架构设计与落地案例分析
摘要: Java与AI/ML技术的融合为智能化应用提供了强大支持。通过选用Deeplearning4j、DJL等框架解决技术适配问题,并结合Spring生态和JVM优化提升性能。在金融风控、智能制造、医疗影像等领域实现了显著效果,如审批效率提升3倍、设备停机减少41%、医疗诊断延迟降低80%。这种技术融合推动了多行业的智能化升级,展现了广阔的应用前景。
339 0
|
5月前
|
存储 边缘计算 数据处理
面向智能医疗的边缘计算与云计算融合架构的设计与实现
边缘+云混合部署架构正在为AIoT与医疗领域带来前所未有的技术变革。通过这种架构,能够实现对海量数据的实时处理和深度分析,提升业务响应速度和效率,同时在保障数据安全的基础上,优化系统的可扩展性和可靠性。随着技术的发展,边缘+云架构的应用场景将愈发广泛,未来必将在更多领域内发挥巨大的潜力。
|
6月前
|
设计模式 开发者
一、HarmonyOS Next 开发者手册项目之项目架构设计
该项目是一个基于HarmonyOS Next的开发者学习手册应用,旨在帮助开发者系统学习HarmonyOS开发知识。项目采用分级学习方式,从基础到高级逐步深入讲解技术与实践案例。前四章重点介绍应用架构相关内容,助力快速掌握应用核心。 项目结构清晰,包含主入口、源代码目录、公共资源和工具等。页面导航分为多个阶段:萌新小白(基础入门)、登堂入室(进阶学习)、进阶高手(高级开发)。支持Markdown解析,使用`@luvi/lv-markdown-in`插件展示内容,并定义了多种数据结构以规范开发流程。 源码已开源,持续更新中
195 1
|
8月前
|
存储 NoSQL Redis
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 + 无锁架构 + EDA架构 + 异步日志 + 集群架构
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 + 无锁架构 + EDA架构 + 异步日志 + 集群架构
阿里面试:Redis 为啥那么快?怎么实现的100W并发?说出了6大架构,面试官跪地: 纯内存 + 尖端结构 +  无锁架构 +  EDA架构  + 异步日志 + 集群架构
|
9月前
|
并行计算 PyTorch 算法框架/工具
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
本文探讨了如何通过技术手段混合使用AMD与NVIDIA GPU集群以支持PyTorch分布式训练。面对CUDA与ROCm框架互操作性不足的问题,文章提出利用UCC和UCX等统一通信框架实现高效数据传输,并在异构Kubernetes集群中部署任务。通过解决轻度与强度异构环境下的挑战,如计算能力不平衡、内存容量差异及通信性能优化,文章展示了如何无需重构代码即可充分利用异构硬件资源。尽管存在RDMA验证不足、通信性能次优等局限性,但该方案为最大化GPU资源利用率、降低供应商锁定提供了可行路径。源代码已公开,供读者参考实践。
812 3
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
|
9月前
|
机器学习/深度学习 测试技术 网络架构
FANformer:融合傅里叶分析网络的大语言模型基础架构
近期大语言模型(LLM)的基准测试结果显示,OpenAI的GPT-4.5在某些关键评测中表现不如规模较小的模型,如DeepSeek-V3。这引发了对现有LLM架构扩展性的思考。研究人员提出了FANformer架构,通过将傅里叶分析网络整合到Transformer的注意力机制中,显著提升了模型性能。实验表明,FANformer在处理周期性模式和数学推理任务上表现出色,仅用较少参数和训练数据即可超越传统Transformer。这一创新为解决LLM扩展性挑战提供了新方向。
269 5
FANformer:融合傅里叶分析网络的大语言模型基础架构