基于Googlenet深度学习网络的信号调制类型识别matlab仿真

简介: 基于Googlenet深度学习网络的信号调制类型识别matlab仿真

1.算法运行效果图预览

8f8444adda0a0053a66725e3f2d6adcd_82780907_202310262332310797868511_Expires=1698334951&Signature=ooV6ajnll0nctS1AwprbG79ljiI%3D&domain=8.jpg
cbe5b9223a59536a0e29cef12cd30b50_82780907_202310262332310829128607_Expires=1698334951&Signature=dHzaS5K2nuPrrhVn5Q4GhRN0%2B2I%3D&domain=8.jpeg

2.算法运行软件版本
MATLAB2022a

3.算法理论概述
信号调制类型识别是在无线通信和无线电频谱监测中的一个重要任务。不同信号调制类型具有不同的频谱特征,深度学习方法在信号调制类型识别中取得了显著的成果。

3.1 深度学习与卷积神经网络
深度学习是一种机器学习方法,卷积神经网络(CNN)是深度学习的重要分支。CNN通过多层卷积和池化层来学习输入数据的特征表示。GoogLeNet是一种深度卷积神经网络结构,其主要创新在于使用了多个并行的卷积层和1x1卷积核来提高网络的效率和准确性。

3.2 数据预处理
首先,采集信号数据并对其进行预处理。信号数据通常以复数形式表示,包括实部和虚部。预处理可能包括归一化、去噪等步骤。

3.3 GoogLeNet结构
GoogLeNet网络结构使用了Inception模块,每个模块包括不同大小的卷积核和池化层,以捕捉多尺度的特征。每个Inception模块的输出被串联在一起,形成网络的输出。

GoogLenet网络亮点

1.引入了Inception结构(融合不同尺度的特征信息)
2.使用1x1的卷积核进行降维以及映射处理
3.添加两个辅助分类器帮助训练
4.丢弃全连接层,使用平均池化层(大大减少模型参数)

Inception结构

fd1e23aecb645b26f296c950ec0ddafd_82780907_202310262333400204836295_Expires=1698335020&Signature=i%2Bu6EY3ipZcBR26UX31Y6ZBBM98%3D&domain=8.jpg

3.4 分类器
在网络的顶部,添加一个全连接层作为分类器,将特征映射到各个信号调制类型的概率分布。通常使用softmax函数来获得不同类别的概率。

4.部分核心程序

```% 获取特征学习器和分类器的层名称
Feature_Learner = net.Layers(142).Name;
Output_Classifier = net.Layers(144).Name;
% 获取类别数量
Number_of_Classes = numel(categories(Training_Dataset.Labels));
% 创建新的特征学习器和分类器层
New_Feature_Learner = fullyConnectedLayer(Number_of_Classes, ...
'Name', 'Coal Feature Learner', ...
'WeightLearnRateFactor', 10, ...
'BiasLearnRateFactor', 10);

New_Classifier_Layer = classificationLayer('Name', 'Coal Classifier');
% 构建新的网络架构
Network_Architecture = layerGraph(net);

New_Network = replaceLayer(Network_Architecture, Feature_Learner, New_Feature_Learner);
New_Network = replaceLayer(New_Network, Output_Classifier, New_Classifier_Layer);
% 分析新的网络结构
analyzeNetwork(New_Network)

% 设置训练选项
maxEpochs = 20;
Minibatch_Size = 8;
Validation_Frequency = floor(numel(Resized_Training_Dataset.Files)/Minibatch_Size);
Training_Options = trainingOptions('sgdm', ...
'MiniBatchSize', Minibatch_Size, ...
'MaxEpochs', maxEpochs, ...
'InitialLearnRate', 1e-3, ...
'Shuffle', 'every-epoch', ...
'ValidationData', Resized_Validation_Dataset, ...
'ValidationFrequency', Validation_Frequency, ...
'Verbose', false, ...
'Plots', 'training-progress');
% 训练网络
net = trainNetwork(Resized_Training_Dataset, New_Network, Training_Options);
% 保存训练好的模型
save gnet.mat

```

相关文章
|
5天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
3天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
5天前
|
机器学习/深度学习 计算机视觉
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用及其面临的挑战。通过分析深度学习模型如卷积神经网络(CNN)的工作原理,我们揭示了这些模型如何有效地处理和识别图像数据。同时,文章也指出了当前深度学习在图像识别中遇到的一些主要问题,包括过拟合、数据集偏差和模型解释性等,为读者提供了对这一领域全面而深入的理解。
|
5天前
|
机器学习/深度学习 传感器 边缘计算
基于深度学习的图像识别技术在自动驾驶中的应用####
随着人工智能技术的飞速发展,深度学习已成为推动自动驾驶技术突破的关键力量之一。本文深入探讨了深度学习算法,特别是卷积神经网络(CNN)在图像识别领域的创新应用,以及这些技术如何被集成到自动驾驶汽车的视觉系统中,实现对复杂道路环境的实时感知与理解,从而提升驾驶的安全性和效率。通过分析当前技术的最前沿进展、面临的挑战及未来趋势,本文旨在为读者提供一个全面而深入的视角,理解深度学习如何塑造自动驾驶的未来。 ####
32 1
|
11天前
|
机器学习/深度学习 数据采集 传感器
基于深度学习的图像识别技术在自动驾驶中的应用研究####
本文旨在探讨深度学习技术,特别是卷积神经网络(CNN)在自动驾驶车辆图像识别领域的应用与进展。通过分析当前自动驾驶技术面临的挑战,详细介绍了深度学习模型如何提升环境感知能力,重点阐述了数据预处理、网络架构设计、训练策略及优化方法,并展望了未来发展趋势。 ####
46 6
|
14天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
39 8
|
18天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
18天前
|
机器学习/深度学习 数据采集 测试技术
深度学习在图像识别中的应用
本篇文章将探讨深度学习在图像识别中的应用。我们将介绍深度学习的基本原理,以及如何使用深度学习进行图像识别。我们将通过一个简单的代码示例来演示如何使用深度学习进行图像识别。这篇文章的目的是帮助读者理解深度学习在图像识别中的作用,并学习如何使用深度学习进行图像识别。
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
19天前
|
机器学习/深度学习 算法框架/工具 Python
深度学习在图像识别中的应用
本文将探讨深度学习技术在图像识别领域的应用。我们将介绍深度学习的基本原理,以及如何使用深度学习进行图像识别。我们还将通过一个简单的代码示例来演示如何使用深度学习进行图像识别。