基于MFCC特征提取和GMM训练的语音信号识别matlab仿真

简介: 基于MFCC特征提取和GMM训练的语音信号识别matlab仿真

1.算法运行效果图预览

1.jpeg
2.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
语音信号识别是将输入的语音信号映射到对应的文本或语音标签的过程。基于MFCC(Mel-Frequency Cepstral Coefficients)特征提取和GMM(Gaussian Mixture Model)训练的方法在语音识别领域取得了显著的成果。

3.1 MFCC特征提取

3.png
4.png

3.2 Gaussian Mixture Model(GMM)

    GMM是一种用于建模概率分布的方法,常用于对语音特征进行建模。在语音信号识别中,每个语音类别(音素、词汇等)都可以由一个GMM来表示。GMM由多个高斯分布组成,用于描述特征空间中的数据分布。训练GMM的过程涉及以下步骤:

初始化: 随机初始化各个高斯分布的参数,如均值和协方差矩阵。
期望最大化(EM)算法: 迭代优化步骤,包括E步(计算后验概率)和M步(更新高斯分布参数)。
模型选择: 通过交叉验证等方法选择适当数量的高斯分布,以避免过拟合。

3.3. 实现过程

基于MFCC特征提取和GMM训练的语音信号识别过程包括以下步骤:

数据准备: 收集并整理语音数据集,其中包含录制的语音样本和相应的标签。
MFCC特征提取: 对每个语音样本应用MFCC特征提取过程,得到MFCC系数。
GMM训练: 对每个语音类别(音素、词汇等)分别训练一个GMM模型,使用EM算法优化模型参数。
解码: 给定一个未知语音样本,计算其MFCC特征并与各个GMM模型进行比较,选择概率最高的模型作为预测结果。

3.4 应用领域

   基于MFCC特征提取和GMM训练的语音信号识别方法在以下领域得到应用:语音识别系统: 用于将说话人的语音转换为文本,支持语音助手、语音搜索等应用。说话人识别: 用于辨别不同说话人的声音,有助于语音安全认证和个性化服务。情感分析: 通过分析声音的特征,识别语音中蕴含的情感信息,如愉悦、紧张等。

4.部分核心程序

```Num_Gauss = 64;
%读取训练数据
[Speech_Train10,Fs] = audioread('Train_Samples\yes_no\yes3.wav');
[Speech_Train20,Fs] = audioread('Train_Samples\yes_no\no3.wav');
%endpoint
Index_use = func_cut(Speech_Train10,Fs,0);
Speech_Train1 = Speech_Train10(Index_use(1):Index_use(2));
Index_use = func_cut(Speech_Train20,Fs,0);
Speech_Train2 = Speech_Train20(Index_use(1):Index_use(2));
%预加重
%Step 1: pre-emphasis
Speech_Train1 = filter([1, -0.95], 1, Speech_Train1);
%Step 1: pre-emphasis
Speech_Train2 = filter([1, -0.95], 1, Speech_Train2);

%MFCC提取
global Show_Wind;
Show_Wind = 0;
global Show_FFT;
Show_FFT = 0;

Train_features1=melcepst(Speech_Train1,Fs);
Train_features2=melcepst(Speech_Train2,Fs);

%GMM训练
[mu_train1,sigma_train1,c_train1]=fun_GMM_EM(Train_features1',Num_Gauss);
[mu_train2,sigma_train2,c_train2]=fun_GMM_EM(Train_features2',Num_Gauss);

mu_train{1} = mu_train1;
mu_train{2} = mu_train2;
sigma_train{1} = sigma_train1;
sigma_train{2} = sigma_train2;
c_train{1} = c_train1;
c_train{2} = c_train2;

save GMM_MFCC3.mat mu_train sigma_train c_train Train_features1 Train_features2


```js
相关文章
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
29天前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
3月前
|
机器学习/深度学习 算法
基于心电信号时空特征的QRS波检测算法matlab仿真
本课题旨在通过提取ECG信号的时空特征并应用QRS波检测算法识别心电信号中的峰值。使用MATLAB 2022a版本实现系统仿真,涵盖信号预处理、特征提取、特征选择、阈值设定及QRS波检测等关键步骤,以提高心脏疾病诊断准确性。预处理阶段采用滤波技术去除噪声,检测算法则结合了一阶导数和二阶导数计算确定QRS波峰值。
|
5月前
|
机器学习/深度学习 数据采集 监控
基于CNN卷积神经网络的步态识别matlab仿真,数据库采用CASIA库
**核心程序**: 完整版代码附中文注释,确保清晰理解。 **理论概述**: 利用CNN从视频中学习步态时空特征。 **系统框架**: 1. 数据预处理 2. CNN特征提取 3. 构建CNN模型 4. 训练与优化 5. 识别测试 **CNN原理**: 卷积、池化、激活功能强大特征学习。 **CASIA数据库**: 高质量数据集促进模型鲁棒性。 **结论**: CNN驱动的步态识别展现高精度,潜力巨大,适用于监控和安全领域。
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于CNN卷积神经网络的MQAM调制识别matlab仿真
**理论**: 利用CNN自动识别MQAM调制信号,通过学习星座图特征区分16QAM, 64QAM等。CNN从原始数据提取高级特征,优于传统方法。 - **CNN结构**: 自动特征学习机制,适配多种MQAM类型。 - **优化**: 损失函数指导网络参数调整,提升识别准确度。 - **流程**: 大量样本训练+独立测试评估,确保模型泛化能力。 - **展望**: CNN强化无线通信信号处理,未来应用前景广阔。
|
5月前
|
机器学习/深度学习 算法 BI
基于深度学习网络的USB摄像头实时视频采集与手势检测识别matlab仿真
**摘要:** 本文介绍了使用MATLAB2022a实现的基于GoogLeNet的USB摄像头手势识别系统。系统通过摄像头捕获视频,利用深度学习的卷积神经网络进行手势检测与识别。GoogLeNet网络的Inception模块优化了计算效率,避免过拟合。手势检测涉及RPN生成候选框,送入网络进行分类。系统架构包括视频采集、手势检测与识别、以及决策反馈。通过GPU加速和模型优化保证实时性能,应用于智能家居等场景。
基于高通滤波器的ECG信号滤波及心率统计matlab仿真
**摘要:** 使用MATLAB2022a,实施高通滤波对ECG信号预处理,消除基线漂移,随后分析心率。系统仿真展示效果,核心代码涉及IIR HPF设计,如二阶滤波器的差分方程。通过滤波后的信号,检测R波计算RR间期,从而得到心率。滤波与R波检测是心电生理研究的关键步骤,平衡滤波性能与计算资源是设计挑战。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
211 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
135 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
95 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码