数据结构刷题训练:队列实现栈

简介: 数据结构刷题训练:队列实现栈

前言

       我们已经学习了栈和队列,也都实现了它们各自的底层接口,那么接下我们就要开始栈和队列的专项刷题训练。


1. 题目:使用队列实现栈

题目描述:

题目链接:

2. 思路

       队列的结构是先进先出,题目的要求是,让我们利用队列的底层接口来实现栈,不可以改变队列的底层逻辑,所以如果你的思路是逆置队列这个链表,那这个思路就被pass掉了。

        那我们要如何利用队列尾进头出的特性来实现栈的尾进尾出呢?题目中给了我们两个队列,我们要使用这两个队列实现栈。

       入栈操作好说,问题在于出栈问题,思路是这样的:我们有两个队列,一个队列用于存储数据,另外一个队列(空队列)用于拷贝数据,将原队列的前n-1个数据拷贝到空队列中,然后再将原队列剩余的最后一个元素出队列,这样就模拟实现了栈的尾出


 

3. 分析

        根据上述的思路分析,队列实现栈,入栈不需要什么特殊操作例如我们入栈:1、2、3、4、5,出栈呢就是:5、4、3、2、1。

       上述的思路已经介绍了解决办法,也是非常简单的,但有人可能会问:那这样算法的效率岂不是很低?这种方法的效率确实低,但是这道题目考察的并不是效率的问题,而实性质问题,这也是一道经典的面试题目。这道题目并不难,但它考察对数据结构的理解,各各接口的实现中有很多需要注意的细节。

       首先这道题目是并没有给现成的队列,使用C语言解决需要我们现成造轮子,这也是C语言刷题的弊端,有很多题目都需要造轮子。那么这里我们就可以直接复制前边我们实现的队列。

接下来就是我们开始注意实现接口:

        首先题目中给了我们两个队列,为了便于传参和使用,我们可以定义一个结构体:

typedef struct {
Que q1;    //注意这里定于的队列类型一定要与自己定义的队列结构体类型对应
Que q2;
} MyStack;

这里我们在前边介绍结构体时提到过,匿名结构体。

3.1 创建栈

MyStack* myStackCreate() {
}

题目给出的接口如上,那这里我们要怎么创建我们的栈呢?是这样吗?

MyStack* myStackCreate() {
    MyStack st;
    //…
    return &st;
}

        对函数和指针比较熟悉的同学可能就已经发现不行,为什么不行?这里就牵扯到了函数相关的知识,函数内创建的变量都是存储在栈区,出了函数就会被销毁,内存已经被销毁,返回指针还有什么意义呢?所以这里需要使用malloc函数,动态内存分配开辟的空间在堆区,程序结束前不主动释放就一直存在。所以上述的创建变量的方法不可取。

正确的方法:

MyStack* myStackCreate() {
    MyStack* pst=(MyStack*)malloc(sizeof(MyStack));
    QueueInit(&pst->q1);
    QueueInit(&pst->q2);
    return pst;
}

        这里的pst->q1,就等价于我们在创建的队列的结构体变量:Que q;在调用接口时需要传地址过去。

3.2入栈

       接下来就是入栈,题目中给了我们两个队列,为了后续出栈操作我们需要确保一个队列为空,用于拷贝数据,所以我们入栈时需要在不为空的队列入。

void myStackPush(MyStack* obj, int x) {
    if(!IsEmpty(&obj->q1))
    {
        QueuePush(&obj->q1,x);
    }
    else
    {
        QueuePush(&obj->q2,x);
    }
}

如果两个都为空那就随便选一个都可以。

3.3 出栈

       在进行出栈操作的时候,我们需要判断哪一个队列为空,然后将非空队列的前n-1个元素依次拷贝到空队列当中。这里我们可以先假设队列1为空,然后在判断队列1是否为空,如果不为空那就是队列2为空,进行修改。这个假设的方法还是很实用的。

拷贝过程如下:

       注意这里是拷贝,不是将原队列的节点插入到空队列,而是通过队头数据这个函数接口来将数据传过去,然后入队(调用入队接口),入队之后及时更新队头(出队)。

 

int myStackPop(MyStack* obj) {
    Que* Empty=&obj->q1;
    Que* NoEmpty=&obj->q2;
    if(!IsEmpty(&obj->q1))
    {
        Empty=&obj->q2;
        NoEmpty=&obj->q1;
    }
    while(QueueSize(NoEmpty)>1)
    {
        QueuePush(Empty,QueueFront(NoEmpty));
        QueuePop(NoEmpty);
    }
    int top=QueueFront(NoEmpty);//最后保存非空队列最后一个队列节点的数据,便于返回
    QueuePop(NoEmpty);          //最后一个元素出队。
    return top;
}

3.4 栈顶数据

        栈顶数据接口实现就简单了,我们前边对队列进行实现时,有队头和队尾数据的接口,我们可以直接调用。

int myStackTop(MyStack* obj) {
    if(!IsEmpty(&obj->q1))
    {
        return QueueBlack(&obj->q1);
    }
    else
    {
        return QueueBlack(&obj->q2);
    }
}

3.5 判空和 “ 栈 ” 的销毁

        判空就很简单,如果两个队列都为空,那么这个 “ 栈 ” 也就为空。

bool myStackEmpty(MyStack* obj) {
    return (IsEmpty(&obj->q1)&&IsEmpty(&obj->q2));
}

        “ 栈 ”的销毁,这里就不能直接free掉obj了,如果直接释放那我们程序中的两个队列就会丢失无法释放,所以在释放掉obj之前,我们需要先将两个队列销毁。

void myStackFree(MyStack* obj) {
    DestoryQueue(&obj->q1);
    DestoryQueue(&obj->q2);
    free(obj);
}

4. 题解

完整代码如下:

typedef int Datatype;
typedef struct QueueNode
{
  struct QueueNode* next;
  Datatype data;
 }QueueNode;
typedef struct Queue
{
  QueueNode* head;
  QueueNode* tail;
  int size;
}Que;
//初始化队列
void QueueInit(Que* pq);
//入队
void QueuePush(Que* pq, Datatype x);
//出队
void QueuePop(Que* pq);
//队头数据
Datatype QueueFront(Que* pq);
//队尾数据
Datatype QueueBlack(Que* pq);
//判空
bool IsEmpty(Que* pq);
//队列大小
int QueueSize(Que* pq);
//销毁队列
void DestoryQueue(Que* pq);
void QueueInit(Que* pq)
{
  assert(pq);
  pq->head = pq->tail = NULL;
  pq->size = 0;
}
void QueuePush(Que* pq, Datatype x)
{
  assert(pq);
  QueueNode* newnode = (QueueNode*)malloc(sizeof(QueueNode));
  if (newnode == NULL)
  {
    perror("malloc");
    exit(-1);
  }
  newnode->data = x;
  newnode->next = NULL;
  if (pq->tail == NULL)
  {
    pq->head = pq->tail = newnode;
  }
  else
  {
    pq->tail->next = newnode;
    pq->tail = newnode;
  }
  pq->size++;
}
void QueuePop(Que* pq)
{
  assert(pq);
  assert(!IsEmpty(pq));
  if (pq->head->next == NULL)
  {
    free(pq->head);
    pq->head = pq->tail = NULL;
  }
  else
  {
    QueueNode* next = pq->head->next;
    free(pq->head);
    pq->head = next;
  }
  pq->size--;
}
Datatype QueueFront(Que* pq)
{
  assert(pq);
  assert(!IsEmpty(pq));
  return pq->head->data;
}
Datatype QueueBlack(Que* pq)
{
  assert(pq);
  assert(!IsEmpty(pq));
  return pq->tail->data;
}
bool IsEmpty(Que* pq)
{
  assert(pq);
  return (pq->head == NULL);
}
int QueueSize(Que* pq)
{
  assert(pq);
  return pq->size;
}
void DestoryQueue(Que* pq)
{
  assert(pq);
  QueueNode* cur = pq->head;
  while (cur)
  {
    QueueNode* next = cur->next;
    free(cur);
    cur = next;
  }
  pq->head = pq->tail = NULL;
  pq->size = 0;
}
typedef struct {
Que q1;
Que q2;
} MyStack;
MyStack* myStackCreate() {
    MyStack* pst=(MyStack*)malloc(sizeof(MyStack));
    QueueInit(&pst->q1);
    QueueInit(&pst->q2);
    return pst;
}
void myStackPush(MyStack* obj, int x) {
    if(!IsEmpty(&obj->q1))
    {
        QueuePush(&obj->q1,x);
    }
    else
    {
        QueuePush(&obj->q2,x);
    }
}
int myStackPop(MyStack* obj) {
    Que* Empty=&obj->q1;
    Que* NoEmpty=&obj->q2;
    if(!IsEmpty(&obj->q1))
    {
        Empty=&obj->q2;
        NoEmpty=&obj->q1;
    }
    while(QueueSize(NoEmpty)>1)
    {
        QueuePush(Empty,QueueFront(NoEmpty));
        QueuePop(NoEmpty);
    }
    int top=QueueFront(NoEmpty);
    QueuePop(NoEmpty);
    return top;
}
int myStackTop(MyStack* obj) {
    if(!IsEmpty(&obj->q1))
    {
        return QueueBlack(&obj->q1);
    }
    else
    {
        return QueueBlack(&obj->q2);
    }
}
bool myStackEmpty(MyStack* obj) {
    return (IsEmpty(&obj->q1)&&IsEmpty(&obj->q2));
}
void myStackFree(MyStack* obj) {
    DestoryQueue(&obj->q1);
    DestoryQueue(&obj->q2);
    free(obj);
}

 

总结

       本文队列模拟实现栈,让我们在实践中深入思考了数据结构的本质和应用,为我们的编程能力和问题解决能力提供了锻炼。本期内容到此结束,感谢阅读!

相关文章
|
2月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
40 1
|
2月前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
73 5
|
2月前
|
存储 算法 Java
数据结构的栈
栈作为一种简单而高效的数据结构,在计算机科学和软件开发中有着广泛的应用。通过合理地使用栈,可以有效地解决许多与数据存储和操作相关的问题。
|
2月前
|
存储 JavaScript 前端开发
执行上下文和执行栈
执行上下文是JavaScript运行代码时的环境,每个执行上下文都有自己的变量对象、作用域链和this值。执行栈用于管理函数调用,每当调用一个函数,就会在栈中添加一个新的执行上下文。
|
2月前
|
算法
数据结构之购物车系统(链表和栈)
本文介绍了基于链表和栈的购物车系统的设计与实现。该系统通过命令行界面提供商品管理、购物车查看、结算等功能,支持用户便捷地管理购物清单。核心代码定义了商品、购物车商品节点和购物车的数据结构,并实现了添加、删除商品、查看购物车内容及结算等操作。算法分析显示,系统在处理小规模购物车时表现良好,但在大规模购物车操作下可能存在性能瓶颈。
54 0
|
2月前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
244 9
|
2月前
|
存储
系统调用处理程序在内核栈中保存了哪些上下文信息?
【10月更文挑战第29天】系统调用处理程序在内核栈中保存的这些上下文信息对于保证系统调用的正确执行和用户程序的正常恢复至关重要。通过准确地保存和恢复这些信息,操作系统能够实现用户模式和内核模式之间的无缝切换,为用户程序提供稳定、可靠的系统服务。
54 4
|
3月前
|
算法 程序员 索引
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
栈的基本概念、应用场景以及如何使用数组和单链表模拟栈,并展示了如何利用栈和中缀表达式实现一个综合计算器。
56 1
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
|
2月前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
3月前
初步认识栈和队列
初步认识栈和队列
66 10