视频图像处理技术优势安防视频监控应用

简介:

随着科技的发展和时代的不断进步,视频和图像数据处理技术已经逐渐成熟起来,对人们的生活和工作起着重要的作用。未来,视频监控与我们生活的联系将日益密切。毫无疑问,视频图像处理技术的研发是时下最大的安防热点之一,也是众多安防企业值得关注的一个领域。

视频图像处理技术的四大技术

视频图像处理过程中会涉及到对视频图像数据的采集、传输、处理、显示和回放等过程,这些过程共同形成了一个系统的整体周期,可以连续性的运作。在视频图像处理技术范围内最主要的就是包括了图像的压缩技术和视频图像的处理技术等。目前,市场上主流的视频图像处理技术包括:智能分析处理,视频透雾增透技术,宽动态处理,超分辨率处理,下面分别介绍以上四种处理技术。

智能分析处理技术

智能视频分析技术是解决视频监控领域大数据筛选、检索技术问题的重要手段。目前国内智能分析技术可以分为两大类:一类是通过前景提取等方法对画面中的物体的移动进行检测,通过设定规则来区分不同的行为,如拌线、物品遗留、周界等;另一类是利用模式识别技术对画面中所需要监控的物体进行针对性的建模,从而达到对视频中的特定物体进行检测及相关应用,如车辆检测、人流统计、人脸检测等应用。

视频透雾增透技术

视频透雾增透技术,一般指将因雾和水气灰尘等导致朦胧不清的图像变得清晰,强调图像当中某些感兴趣的特征,抑制不感兴趣的特征,使得图像的质量改善,信息量更加丰富。由于雾霾天气以及雨雪、强光、暗光等恶劣条件导致视频监控图像的图像对比度差、分辨率低、图像模糊、特征无法辨识等问题,增透处理后的图像可为图像的下一步应用提供良好的条件。

数字图像宽度动态的算法

数字图像处理中宽动态范围是一个基本特征,在图像和视觉恢复中占据了重要的位置,关系着最终图像的成像质量。其动态的范围主要受保护信号量和平均噪声比值来决定的,其中动态范围可以从光能的角度来定义。

数字的信号处理会受到曝光量中曝光效果、光照度和强度的影响和作用。动态范围跟图案的深度息息相关,如果图像动态范围宽,则在图像处理时亮度变化较为明显,但如果动态范围较窄,在亮度转化时,亮暗程度的变化并不明显。目前图像的宽动态范围在视频监控、医疗影像等领域应用较为广泛。

超分辨率重建技术

提高图像分辨率最直接的办法就是提高采集设备的传感器密度。然而高密度的图像传感器的价格相对昂贵,在一般应用中难以承受;另一方面,由于成像系统受其传感器阵列密度的限制,目前已接近极限。

解决这一问题的有效途径是采用基于信号处理的软件方法对图像的空间分辨率进行提高,即超分辨率(SR:Super-Resolution)图像重建,其核心思想是用时间带宽(获取同一场景的多帧图像序列)换取空间分辨率,实现时间分辨率向空间分辨率的转换,使得重建图像的视觉效果超过任何一帧低分辨率图像。

随着人们对监控图像质量的要求越来越高,提升监控图像的实用价值已经成为社会向整个安防行业提出的新要求。在这样的形式下,现在的主流视频图像处理技术都要与时俱进,以满足用户不断变化的需求。

视频图像处理技术在安防的要求特殊

由于计算机的处理速度极快,且数字信号具有失真小、易保存、易传输、抗干扰能力强等特点,因而计算机图像处理的应用十分广泛,包括航空航天、遥测技术、医疗器械、工业自动化检测、安全识别、安防监控、娱乐媒体等各大领域。每一个应用领域都有其领域的特殊性要求,安防监控行业应用也有其固有的特殊性。

对图像清晰度要求较高。在治安监控现场,公安机关往往需要通过监控录像来辨认嫌疑人、证据等。一般清晰度不高的视频都达不到这种要求。在交通监控现场,交警需要通过监控图像来识别车牌、违章行为、驾驶人等要求,模糊的图像在这种场合根本无法应用。

不同的行业监控,对图像要求的差异性。比如医疗监控,对图像的色彩还原性要求比较高。智能交通监控,对摄像机夜间照度和抓拍速度要求比较高,要求能清晰辨别车牌。在无人值守监控,需要设备在无人看管的条件下能长期稳定的工作。

户外安装,无人看守。在安防领域,大多情况设备需要安装在室外,设备需要经受常年的风吹日晒。要经历常年温度、湿度、盐度、辐射等自然条件的影响。电子设备自身的老化的速度会比其他领域要相对快一些。摄像机镜头、电子设备、传输线路等设施的老化会导致图像越来越模糊。

责任编辑:石慧

上一页12下一页

海量视频路数的要求。在大型平安城市监控项目中,视频路数会达到上万路,甚至更多路。如此海量的视频路数,对网络带宽、存储设备都提出了很高的要求。所以在视频监控领域都期望视频编码的码率压缩比达到最高,从而降低对带宽和容量的要求。这就导致在视频编码环节产生更多的信息丢失,从而导致图像模糊。

安防领域的这些特殊应用场所,都会导致图像清晰度的下降,反过来又对图像清晰度有很高的要求,势必会导致模糊图像处理技术在这里有广阔的应用前景。

视频图象处理技术在安防行业的应用

1)视频监控在各类政府工程项目“平安城市”、“智慧城市”、“智能交通”、“3111工程”、“平安校园”等项目中,视频监控都是不可或缺的一部分。视频图像的质量直接影响安防监控的力度,应用视频图像处理技术可提高安防监控的质量。针对视频图像处理,迅通近期推出一款新产品——视频图像智能分析软件(简称迅通VAIS)。这是一款集合宽动态增强技术处理、超分辨率重建技术、去雾增强处理技术的视频图像处理软件,可广泛应用于恶劣环境下的监控视频图像处理,提升画面质量,同时无需在系统前端投入。该软件可通过对视频图像进行预处理,实现在无人值守后台的情况下不间断地对视频图像进行自动处理并归档,以方便随时调看处理过的视频,极大程度上将繁琐的处理过程简便化,为“平安城市”、“智能交通”等项目保驾护航。目前全国各地平安城市建议正如火如荼地进行,大部分重点城市平安城市建设已完成。项目完成后,监控系统的应用尤为重要,如何更好地应用该系统为城市治安,城市建议作贡献?面对海量的视频文件,如何提高应用?由于初期平安建设监控应用普遍使用模拟摄像机或者标清摄像机,视频画质比较模糊,要想满足高清化的应用需要,以往的方法是更换原有前端摄像机,该方法的缺点是大幅度增加成本投入。

2)常规摄像机视场中的物体在有亮度较高的背景光情况下,如看门口或窗外的物体时,在拍摄过程中,被拍摄的主体目标后面有非常亮的背景或一个亮点光源。传统普通摄像机对单一图像中最亮和最暗部分的平衡调整能力非常有限,一般以摄取进来的所有光线的平均值为基准,并决定曝光等级。为了克服这个问题,一种称为背光补偿(BLC)的方法通过加权的区域理论被广泛使用在多数摄像机上。采用中央背光补偿(BLC)模式,它主要是靠提升视场中央部分的亮度、降低视场四周部分的亮度来达到看清位于中央位置内物体的目的。但是,在这种情况下摄像机无法同时看清前场景与后场景内的目标,使用宽动态(Wide-dynamic)范围工作模式可有效解决这一矛盾。在一些明暗反差较强烈的场合,传统摄像机的表现就不尽如意,得不到清晰的图像。于是通过技术手段使摄像机具备良好的宽动态功能(WDR),近年来宽动态摄像机被广泛应用于背光环境下的场合。但如果大范围应用宽动态摄像机,系统造价比较高,特别针对原有系统的升级,更是造成一种浪费。迅通VAIS视频图像处理中的宽动态背光处理技术可改善视频监控中整体偏黑、背光的图像,增加图像的层次跟细节,还原视频图像的关键信息。例如在交通视频、银行取款机监控视频、仓库视频等监控视频中,经常出现图像背光的情况,一旦出现事故视频图像将成为关键的信息来源。监管人员可利用宽动态、背光处理后的监控视频图像进行分析取证,提升视频摘要检索的准确率,获取关键信息,快速找到想要的数据。

3)以视频监控为基础材料的图像侦查成为继刑侦、技侦、网侦之后侦查破案的第四大技术支撑。人们可通过视频图像智能分析处理技术,对视频中的特定物体进行检测与分析,从而获取视频关键信息,协助公安部门快速破案,实际应用在车牌分辨、背光人脸分辨等方面。

4)连日来的大雾天气形成了巨大的污染带,从北京、天津到石家庄,从郑州、南通到贵阳,空气污染指数持续上升,全国74个重点监测城市近半数严重污染,北京城区PM2.5一度逼近1000。巨大的雾霾笼罩在中国上空,遮蔽了视线,严重影响着各地居民的正常生活及交通运输畅通。据相关技术人员介绍,雾霾天气下,大部分视频监控系统所监控的图像色彩将会暗淡、其对比度也会变低,因此会导致一些重要目标的细节淹没在雾气中难以发现,这就会导致视频监控系统正常功能发挥受到影响。如何去除视频中遮挡的雾气等杂物,提高视频成像清晰度,成为当前户外视频监控系统中一项重要的技术,尤其是当前智能交通网的建设下,对这一要求更加迫切。迅通VAIS通过去雾处理技术对低质量、雾霾天气以及雨雪、强光、暗光等恶劣条件下的视频图像进行增强处理。解决视频监控图像的图像对比度差、分辨率低、图像模糊、特征无法辨识等图像问题,助力公安机关对图像信息的提取和判断。

在森林火灾中,场景图像整体发白,细节模糊,对比度下降。经处理以后,整幅图像对比度加大,散射效应得到很大程度抑制,图像显得清晰、通透,增加了图像的层次和细节。

结语:随着科技的发展和时代的不断进步,视频和图像数据处理技术已经逐渐成熟起来,对人们的生活和工作起着重要的作用。未来,视频监控与我们生活的联系将日益密切。毫无疑问,视频图像处理技术的研发是时下最大的安防热点之一,也是众多安防企业值得关注的一个领域

本文转自d1net(转载)

相关文章
|
6月前
|
机器学习/深度学习 监控 固态存储
探索深度学习在视频分析中的应用
【6月更文挑战第7天】本文探讨了深度学习在视频分析的应用,涉及目标检测、行为识别、场景理解和视频生成。深度学习借助CNN、3D卷积、RNN/LSTM捕捉时空信息。目标检测有R-CNN和YOLO等方法,行为识别包括时空特征和骨骼数据方法。场景理解涵盖语义分割、目标跟踪和场景分类,视频生成则利用GAN和RNN生成连续帧。尽管面临数据标注、计算资源和泛化能力挑战,深度学习在视频分析领域前景广阔。
|
7月前
|
人工智能 监控 安全
Spring Cloud+Uniapp 智慧工地云平台源码 智慧工地云平台AI视频分析应用
AI视频分析包括行为分析,即人员安全帽佩戴检测、反光衣穿戴检测、人员出入检测、区域入侵监测,以及烟火监测、人数统计、人脸识别、车辆识别、人体测温等。
82 0
|
监控 安全 BI
智慧工地云平台,功能包括:项目管理、企业管理、人员管理、监督检查、工程报监、环境监测、劳务实名制、统计报表、政策法规、视频监控、环境监测、APP应用
智慧工地平台是一种智慧型、系统性的工地信息化解决方案,它把现代信息技术融入到建设工程管理中,协调各方资源,优化施工过程,有效提升工程管理水平,实现智慧工程施工。功能模块: GIS地图首页、项目管理、企业管理、人员管理、监督检查、工程报监、环境监测、劳务实名制、统计报表、政策法规、视频监控、环境监测、APP应用管理等。
285 0
|
Web App开发 人工智能 监控
盘点:我国安防监控市场上 3 大常见的安防视频监控平台
我国的安防视频监控行业在过去几年里取得了快速发展,安防监控市场规模日益增长,预计未来几年还将保持较高增长率,这主要受到日益增长的需求和视频监控在公共安全领域的推动。今天我们就来盘点市面上性价比高、功能较多的 3 大常用视频监控平台及其特点。
282 0
|
存储 人工智能 达摩院
带你读《云存储应用白皮书》之40:2. 视频监控混合云存储解决方案
带你读《云存储应用白皮书》之40:2. 视频监控混合云存储解决方案
347 0
|
存储 监控
《安防视频监控数据存储解决方案蓝皮书》电子版地址
安防视频监控数据存储解决方案蓝皮书
124 0
《安防视频监控数据存储解决方案蓝皮书》电子版地址
|
传感器 人工智能 监控
AI视频监控普及应用的三大挑战
视频监控在安全领域已经根深蒂固了几十年,但视频监控具有超越安全的价值这一观点正在被越来越多的业内人士认可和关注。
AI视频监控普及应用的三大挑战
|
机器学习/深度学习 自然语言处理 算法
Interview:算法岗位面试—11.17下午上海某网**软件公司(上市)技术面之比赛考察、目标检测算法、视频分析算法考点
Interview:算法岗位面试—11.17下午上海某网**软件公司(上市)技术面之比赛考察、目标检测算法、视频分析算法考点
|
传感器 人工智能 监控
AI 智能视频分析在零售业中的应用
在现代世界中,零售业正在迅速增加人工智能在所有可能的工作流程中的应用。因此,通过应用分析来利用机会无疑可以改善零售行业中的各种运营。
1012 0
AI 智能视频分析在零售业中的应用
|
存储 机器学习/深度学习 人工智能
困境实现飞跃,梦想照进现实《安防视频监控数据存储蓝皮书》权威发布
阿里云技术团队经过反复打磨,针对安防视频监控现状,结合阿里云庞大技术体系和存储产品形态,于近日发布了存储解决方案蓝皮书系列,今天《阿里云安防视频监控存储解决方案蓝皮书》(以下简称“蓝皮书”)正式上线,剖析行业瓶颈,实现困境中的飞跃。
1371 0
困境实现飞跃,梦想照进现实《安防视频监控数据存储蓝皮书》权威发布

热门文章

最新文章